34 research outputs found

    A guide for understanding and designing Mendelian randomization studies in the musculoskeletal field

    Get PDF
    Mendelian randomization (MR) is an increasingly popular component of an epidemiologist's toolkit, used to provide evidence of a causal effect of one trait (an exposure, eg, body mass index [BMI]) on an outcome trait or disease (eg, osteoarthritis). Identifying these effects is important for understanding disease etiology and potentially identifying targets for therapeutic intervention. MR uses genetic variants as instrumental variables for the exposure, which should not be influenced by the outcome or confounding variables, overcoming key limitations of traditional epidemiological analyses. For MR to generate a valid estimate of effect, key assumptions must be met. In recent years, there has been a rapid rise in MR methods that aim to test, or are robust to violations of, these assumptions. In this review, we provide an overview of MR for a non‐expert audience, including an explanation of these key assumptions and how they are often tested, to aid a better reading and understanding of the MR literature. We highlight some of these new methods and how they can be useful for specific methodological challenges in the musculoskeletal field, including for conditions or traits that share underlying biological pathways, such as bone and joint disease. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research

    Machine learning outperforms clinical experts in classification of hip fractures

    Get PDF
    Hip fractures are a major cause of morbidity and mortality in the elderly, and incur high health and social care costs. Given projected population ageing, the number of incident hip fractures is predicted to increase globally. As fracture classification strongly determines the chosen surgical treatment, differences in fracture classification influence patient outcomes and treatment costs. We aimed to create a machine learning method for identifying and classifying hip fractures, and to compare its performance to experienced human observers. We used 3659 hip radiographs, classified by at least two expert clinicians. The machine learning method was able to classify hip fractures with 19% greater accuracy than humans, achieving overall accuracy of 92%

    A Genome‐Wide Association Study Meta‐Analysis of Alpha Angle Suggests Cam‐Type Morphology May Be a Specific Feature of Hip Osteoarthritis in Older Adults

    Get PDF
    Objective: To examine the genetic architecture of cam morphology using alpha angle (AA) as a proxy measure and conduct an AA genome‐wide association study (GWAS) followed by Mendelian randomization (MR) to evaluate its causal relationship with hip osteoarthritis (OA). Methods: Observational analyses examined associations between AA measurements derived from hip dual x‐ray absorptiometry (DXA) scans from the UK Biobank study and radiographic hip OA outcomes and subsequent total hip replacement. Following these analyses, an AA GWAS meta‐analysis was performed (N = 44,214) using AA measurements previously derived in the Rotterdam Study. Linkage disequilibrium score regression assessed the genetic correlation between AA and hip OA. Genetic associations considered significant (P < 5 × 10−8) were used as AA genetic instrument for 2‐sample MR analysis. Results: DXA‐derived AA showed expected associations between AA and radiographic hip OA (adjusted odds ratio [OR] 1.63 [95% confidence interval (95% CI) 1.58, 1.67]) and between AA and total hip replacement (adjusted hazard ratio 1.45 [95% CI 1.33, 1.59]) in the UK Biobank study cohort. The heritability of AA was 10%, and AA had a moderate genetic correlation with hip OA (rg = 0.26 [95% CI 0.10, 0.43]). Eight independent genetic signals were associated with AA. Two‐sample MR provided weak evidence of causal effects of AA on hip OA risk (inverse variance weighted OR 1.84 [95% CI 1.14, 2.96], P = 0.01). In contrast, genetic predisposition for hip OA had stronger evidence of a causal effect on increased AA (inverse variance weighted β = 0.09 [95% CI 0.04, 0.13], P = 4.58 × 10−5). Conclusion: Expected observational associations between AA and related clinical outcomes provided face validity for the DXA‐derived AA measurements. Evidence of bidirectional associations between AA and hip OA, particularly for risk of hip OA on AA, suggests that hip shape modeling secondary to a genetic predisposition to hip OA contributes to the well‐established relationship between hip OA and cam morphology in older adults

    Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations

    Get PDF
    Osteoarthritis affects over 300 million people worldwide. Here, we conduct a genome-wide association study meta-analysis across 826,690 individuals (177,517 with osteoarthritis) and identify 100 independently associated risk variants across 11 osteoarthritis phenotypes, 52 of which have not been associated with the disease before. We report thumb and spine osteoarthritis risk variants and identify differences in genetic effects between weight-bearing and non-weight-bearing joints. We identify sex-specific and early age-at-onset osteoarthritis risk loci. We integrate functional genomics data from primary patient tissues (including articular cartilage, subchondral bone, and osteophytic cartilage) and identify high-confidence effector genes. We provide evidence for genetic correlation with phenotypes related to pain, the main disease symptom, and identify likely causal genes linked to neuronal processes. Our results provide insights into key molecular players in disease processes and highlight attractive drug targets to accelerate translation
    corecore