1,005 research outputs found

    Flow past superhydrophobic surfaces with cosine variation in local slip length

    Get PDF
    Anisotropic super-hydrophobic surfaces have the potential to greatly reduce drag and enhance mixing phenomena in microfluidic devices. Recent work has focused mostly on cases of super-hydrophobic stripes. Here, we analyze a relevant situation of cosine variation of the local slip length. We derive approximate formulae for maximal (longitudinal) and minimal (transverse) directional effective slip lengths that are in good agreement with the exact numerical solution and lattice-Bolzmann simulations for any surface slip fraction. The cosine texture can provide a very large effective (forward) slip, but it was found to be less efficient in generating a transverse flow as compared to super-hydrophobic stripes.Comment: 8 pages, 6 figure

    Random-roughness hydrodynamic boundary conditions

    Get PDF
    We report results of lattice Boltzmann simulations of a high-speed drainage of liquid films squeezed between a smooth sphere and a randomly rough plane. A significant decrease in the hydrodynamic resistance force as compared with that predicted for two smooth surfaces is observed. However, this force reduction does not represent slippage. The computed force is exactly the same as that between equivalent smooth surfaces obeying no-slip boundary conditions, but located at an intermediate position between peaks and valleys of asperities. The shift in hydrodynamic thickness is shown to depend on the height and density of roughness elements. Our results do not support some previous experimental conclusions on very large and shear-dependent boundary slip for similar systems.Comment: 4 pages, 4 figure

    Recent Advances in the Treatment of Complex Congenital Diaphragmatic Hernia-A Narrative Review

    Get PDF
    BACKGROUND AND OBJECTIVE: Congenital diaphragmatic hernia (CDH) is an anomaly of the cardiopulmonary system maturation process that results from both a global embryopathy and concomitant mechanical compression of the cardiopulmonary system from the abdominal contents during fetal maturation. This results in pulmonary hypertension, pulmonary hypoplasia, and cardiac dysfunction, requiring intense critical care management. The patients with highest risk CDH are the most challenging, resource-intensive, and bear most of the mortality. Advances at the basic, translational, and clinical research levels are leading to novel therapies and management strategies for complex, high-risk CDH. Our objective is to review novel approaches in thinking and management for the most complex and high-risk CDH patients. These include patients with prenatal and postnatal indicators of high-risk defects, those receiving extracorporeal life support (ECLS), and those with concomitant anomalies such as complex cardiac and/or chromosomal abnormalities. METHODS: PubMed was searched in late 2022 and early 2023 to identify relevant evidence. Search terms included congenital diaphragmatic hernia (CDH) , extracorporeal life support (ECLS) , pulmonary hypertension , dual-hit hypothesis , risk reduction , cardiac/chromosomal anomalies , and novel therapies . We included trials, multicenter studies (prospective and retrospective), single-center reports, and review articles/expert opinion. KEY CONTENT AND FINDINGS: CDH is a congenital anomaly of the cardiopulmonary and diaphragmatic systems that represents a spectrum of disease. High-risk or complex patients are defined by prenatal/postnatal risk stratification, receipt of ECLS, and/or having concomitant anomalies, representing the severe end of that spectrum. Overall survival of high-risk CDH is about 50% and comprises the vast majority of mortality, mandating special emphasis. The development of risk-stratification processes, best practices or guidelines of management, and novel therapies is critical to optimize the care of these infants. CONCLUSIONS: CDH patients with high-risk disease remain a challenging subset of CDH patients. Increasing opportunities for survival are being realized with novel, investigational approaches

    Electroneutrality breakdown for electrolytes embedded in varying-section nanopores

    Full text link
    We determine the local charge dynamics of a z−zz-z electrolyte embedded in a varying-section channel. By means of an expansion based on the length scale separation between the axial and transverse direction of the channel, we derive closed formulas for the local excess charge for both, dielectric and conducting walls, in 2D2D (planar geometry) as well as in 3D3D (cylindrical geometry). Our results show that, even at equilibrium, the local charge electroneutrality is broken whenever the section of the channel is not homogeneous for both dielectric and conducting walls as well as for 2D2D and 3D3D channels. Interestingly, even within our expansion, the local excess charge in the fluid can be comparable to the net charge on the walls. We critically discuss the onset of such local electroneutrality breakdown in particular with respect to the correction that it induces on the effective free energy profile experienced by tracer ions

    Lattice-Boltzmann simulations of the drag force on a sphere approaching a superhydrophobic striped plane

    Get PDF
    By means of lattice-Boltzmann simulations the drag force on a sphere of radius R approaching a superhydrophobic striped wall has been investigated as a function of arbitrary separation h. Superhydrophobic (perfect-slip vs. no-slip) stripes are characterized by a texture period L and a fraction of the gas area ϕ\phi. For very large values of h/R we recover the macroscopic formulae for a sphere moving towards a hydrophilic no-slip plane. For h/R=O(1) and smaller the drag force is smaller than predicted by classical theories for hydrophilic no-slip surfaces, but larger than expected for a sphere interacting with a uniform perfectly slipping wall. At a thinner gap, h≪Rh\ll R the force reduction compared to a classical result becomes more pronounced, and is maximized by increasing ϕ\phi. In the limit of very small separations our simulation data are in quantitative agreement with an asymptotic equation, which relates a correction to a force for superhydrophobic slip to texture parameters. In addition, we examine the flow and pressure field and observe their oscillatory character in the transverse direction in the vicinity of the wall, which reflects the influence of the heterogeneity and anisotropy of the striped texture. Finally, we investigate the lateral force on the sphere, which is detectable in case of very small separations and is maximized by stripes with ϕ=0.5\phi=0.5.Comment: 9 pages, 7 figure

    Implementation of on-site velocity boundary conditions for D3Q19 lattice Boltzmann

    Full text link
    On-site boundary conditions are often desired for lattice Boltzmann simulations of fluid flow in complex geometries such as porous media or microfluidic devices. The possibility to specify the exact position of the boundary, independent of other simulation parameters, simplifies the analysis of the system. For practical applications it should allow to freely specify the direction of the flux, and it should be straight forward to implement in three dimensions. Furthermore, especially for parallelized solvers it is of great advantage if the boundary condition can be applied locally, involving only information available on the current lattice site. We meet this need by describing in detail how to transfer the approach suggested by Zou and He to a D3Q19 lattice. The boundary condition acts locally, is independent of the details of the relaxation process during collision and contains no artificial slip. In particular, the case of an on-site no-slip boundary condition is naturally included. We test the boundary condition in several setups and confirm that it is capable to accurately model the velocity field up to second order and does not contain any numerical slip.Comment: 13 pages, 4 figures, revised versio

    Quantitative analysis of numerical estimates for the permeability of porous media from lattice-Boltzmann simulations

    Full text link
    During the last decade, lattice-Boltzmann (LB) simulations have been improved to become an efficient tool for determining the permeability of porous media samples. However, well known improvements of the original algorithm are often not implemented. These include for example multirelaxation time schemes or improved boundary conditions, as well as different possibilities to impose a pressure gradient. This paper shows that a significant difference of the calculated permeabilities can be found unless one uses a carefully selected setup. We present a detailed discussion of possible simulation setups and quantitative studies of the influence of simulation parameters. We illustrate our results by applying the algorithm to a Fontainebleau sandstone and by comparing our benchmark studies to other numerical permeability measurements in the literature.Comment: 14 pages, 11 figure

    Inertial migration of oblate spheroids in a plane channel

    Get PDF
    We discuss an inertial migration of oblate spheroids in a plane channel, where steady laminar flow is generated by a pressure gradient. Our lattice Boltzmann simulations show that spheroids orient in the flow, so that their minor axis coincides with the vorticity direction (a log-rolling motion). Interestingly, for spheroids of moderate aspect ratios, the equilibrium positions relative to the channel walls depend only on their equatorial radius aa. By analysing the inertial lift force we argue that this force is proportional to a3ba^3b, where bb is the polar radius, and conclude that the dimensionless lift coefficient of the oblate spheroid does not depend on bb, and is equal to that of the sphere of radius aa.Comment: 7 pages, 8 figure

    Tensorial slip of super-hydrophobic channels

    Get PDF
    We describe a generalization of the tensorial slip boundary condition, originally justified for a thick (compared to texture period) channel, to any channel thickness. The eigenvalues of the effective slip length tensor, however, in general case become dependent on the gap and cannot be viewed as a local property of the surface, being a global characteristic of the channel. To illustrate the use of the tensor formalism we develop a semi-analytical theory of an effective slip in a parallel-plate channel with one super-hydrophobic striped and one hydrophilic surface. Our approach is valid for any local slip at the gas sectors and an arbitrary distance between the plates, ranging from a thick to a thin channel. We then present results of lattice Boltzmann simulations to validate the analysis. Our results may be useful for extracting effective slip tensors from global measurements, such as the permeability of a channel, in experiments or simulations.Comment: 12 pages, 7 figure

    Simulation of Claylike Colloids

    Get PDF
    We investigate properties of dense suspensions and sediments of small spherical silt particles by means of a combined Molecular Dynamics (MD) and Stochastic Rotation Dynamics (SRD) simulation. We include van der Waals and effective electrostatic interactions between the colloidal particles, as well as Brownian motion and hydrodynamic interactions which are calculated in the SRD-part. We present the simulation technique and first results. We have measured velocity distributions, diffusion coefficients, sedimentation velocity, spatial correlation functions and we have explored the phase diagram depending on the parameters of the potentials and on the volume fraction.Comment: 20 pages, 14 figure
    • …
    corecore