
 

Inertial migration of oblate spheroids in a plane channel

Citation for published version (APA):
Nizkaya, T. V., Gekova, A. S., Harting, J., Asmolov, E. S., & Vinogradova, O. I. (2020). Inertial migration of
oblate spheroids in a plane channel. Physics of Fluids, 32(11), Article 0028353.
https://doi.org/10.1063/5.0028353

DOI:
10.1063/5.0028353

Document status and date:
Published: 01/11/2020

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1063/5.0028353
https://doi.org/10.1063/5.0028353
https://research.tue.nl/en/publications/17813198-b63b-48f8-b295-3a2cef5eff64


Phys. Fluids 32, 112017 (2020); https://doi.org/10.1063/5.0028353 32, 112017

© 2020 Author(s).

Inertial migration of oblate spheroids in a
plane channel 
Cite as: Phys. Fluids 32, 112017 (2020); https://doi.org/10.1063/5.0028353
Submitted: 04 September 2020 • Accepted: 03 November 2020 • Published Online: 17 November
2020

 Tatiana V. Nizkaya, Anna S. Gekova,  Jens Harting, et al.

COLLECTIONS

 This paper was selected as an Editor’s Pick

ARTICLES YOU MAY BE INTERESTED IN

Achieving large zeta-potentials with charged porous surfaces
Physics of Fluids 32, 102105 (2020); https://doi.org/10.1063/5.0024718

Inertial focusing of elliptical particles and formation of self-organizing trains in a channel
flow
Physics of Fluids 33, 013310 (2021); https://doi.org/10.1063/5.0035668

Fingering instability in Marangoni spreading on a deep layer of polymer solution
Physics of Fluids 32, 112112 (2020); https://doi.org/10.1063/5.0028882

https://images.scitation.org/redirect.spark?MID=176720&plid=1517092&setID=379031&channelID=0&CID=553971&banID=520430996&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=fd1c72ecb1f3dc5d3ee9f65b5b770b49ce497fc6&location=
https://doi.org/10.1063/5.0028353
https://aip.scitation.org/topic/collections/editors-pick?SeriesKey=phf
https://doi.org/10.1063/5.0028353
http://orcid.org/0000-0003-0792-660X
https://aip.scitation.org/author/Nizkaya%2C+Tatiana+V
https://aip.scitation.org/author/Gekova%2C+Anna+S
http://orcid.org/0000-0002-9200-6623
https://aip.scitation.org/author/Harting%2C+Jens
https://aip.scitation.org/topic/collections/editors-pick?SeriesKey=phf
https://doi.org/10.1063/5.0028353
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0028353
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0028353&domain=aip.scitation.org&date_stamp=2020-11-17
https://aip.scitation.org/doi/10.1063/5.0024718
https://doi.org/10.1063/5.0024718
https://aip.scitation.org/doi/10.1063/5.0035668
https://aip.scitation.org/doi/10.1063/5.0035668
https://doi.org/10.1063/5.0035668
https://aip.scitation.org/doi/10.1063/5.0028882
https://doi.org/10.1063/5.0028882


Physics of Fluids ARTICLE scitation.org/journal/phf

Inertial migration of oblate spheroids
in a plane channel

Cite as: Phys. Fluids 32, 112017 (2020); doi: 10.1063/5.0028353
Submitted: 4 September 2020 • Accepted: 3 November 2020 •
Published Online: 17 November 2020

Tatiana V. Nizkaya,1 Anna S. Gekova,1 Jens Harting,2,3 Evgeny S. Asmolov,1
and Olga I. Vinogradova1,a)

AFFILIATIONS
1Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, 31 Leninsky Prospect,
119071 Moscow, Russia

2Helmholtz Institute Erlangen-Nürnberg for Renewable Energy, Forschungszentrum Jülich, Fürther Str. 248,
90429 Nürnberg, Germany

3Department of Chemical and Biological Engineering and Department of Physics, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Fürther Str. 248, 90429 Nürnberg, Germany

a)Author to whom correspondence should be addressed: oivinograd@yahoo.com

ABSTRACT
We discuss an inertial migration of oblate spheroids in a plane channel, where the steady laminar flow is generated by a pressure gradient.
Our lattice Boltzmann simulations show that spheroids orient in the flow, so that their minor axis coincides with the vorticity direction
(a log-rolling motion). Interestingly, for spheroids of moderate aspect ratios, the equilibrium positions relative to the channel walls depend
only on their equatorial radius a. By analyzing the inertial lift force, we argue that this force is proportional to a3b, where b is the polar
radius, and conclude that the dimensionless lift coefficient of the oblate spheroid does not depend on b and is equal to that of the sphere of
radius a.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0028353., s

I. INTRODUCTION

It is well-known that at finite Reynolds numbers, particles
migrate across streamlines of the flow to some equilibrium posi-
tions in the microchannel. This migration is attributed to inertial
lift forces, which are currently successfully used in microfluidic sys-
tems to focus and separate particles of different sizes continuously,
which is important for a wide range of applications.1,2 The rapid
development of an inertial microfluidics has raised a considerable
interest in the lift forces on particles in confined flows. The majority
of previous work on lift forces has assumed that particles are spher-
ical. In their pioneering experiments, Segrè and Silberberg found
that small spheres focus to a narrow annulus at a radial position of
about 0.6 of a pipe radius.3 Later, several theoretical4–7 and numeri-
cal8 studies proposed useful scaling and approximate expressions for
the lift force in a channel flow, which are frequently invoked. The
assumption that particles are spherical often becomes unrealistic.
The non-sphericity could strongly modify the lift forces, so the shape
of particles becomes a very important consideration.9 The body

of theoretical and experimental works investigating lift forces on
non-spherical particles is much less than that for spheres, although
there is a growing literature in this area.

Hur et al.10 and Masaeli et al.11 appear to have been the first to
study experimentally the inertial focusing of non-spherical particles.
These authors addressed the case of particles (spheres and rods of
different aspect ratios) of equal volume and demonstrated the pos-
sibility of their separation in a planar channel of moderate Reynolds
numbers, Re ≤ 100. Roth et al.12 recently reported the separation of
spheres, ellipsoids, and peanut-shaped particles in a spiral microflu-
idic device, where the inertial lift force is balanced by the Dean force
that can be generated in curved channels.13 These papers concluded
that a key parameter defining equilibrium positions of particles is
their rotational diameter. The authors, however, do not relate their
results neither to the variation of the lift force, nor to its dependence
on particle shape.

The theoretical analysis of the lift on non-spherical particles
is beset with difficulties since they could vary their orientation
due to a rotation in a shear flow, which, in turn, could induce
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unsteady flow disturbances leading to a time-dependent lift.14 There
have been some attempts to provide a theory of such a motion by
employing spheroids as a simplest model for non-spherical parti-
cles. It is known that at vanishing particle Reynolds numbers, Rep,
non-inertial spheroids exhibit, in a shear flow, a periodic kayaking
motion along one of the Jeffrey orbits.15 However, the orientation of
oblate spheroids of finite Rep eventually tends to a stable state due to
inertia of the fluid and the particle.16

Computer simulations might shed some light on these phe-
nomena, and, indeed, computational inertial microfluidics is a grow-
ing field that currently attracts much research efforts.17 There are a
number of simulations using the lattice Boltzmann method (LBM)
that is well-suited for parallel processing and allows for an efficient
tracking of the particle–fluid interface,18 which are directly relevant.
A large fraction of these deal with rotation properties of spheroids
in shear flows.19–22 At moderate Rep, oblate spheroids exhibit a log-
rolling motion about their minor axis oriented along the vortic-
ity direction, while prolate particles tumble, but when Rep > 200,
in some situations, a transition to other rotational regimes may
occur.19 Its threshold depends on the particle aspect ratio, which
can be used for their separation.23 However, neither of these papers
addresses the issues of inertial migration. This was taken up only
recently in the paper by Lashgari et al.,24 who carried out simu-
lations of stable equilibrium positions and orientations of oblate
spheroids in rectangular channels. The lift force on cylindrical par-
ticles in rectangular ducts has been calculated by Su, Chen, and
Hu.14 These authors found that particles execute a periodic tumbling
motion, so that the lift force is unsteady, but its average dependence
on the particle position, however, is similar to that for a sphere.
Finally, we should mention that Huang, Marson, and Larson25 used
dissipative particle dynamics simulations to find the equilibrium
positions for prolate and oblate spheroids in a plane Poiseuille
flow.

Nevertheless, despite its importance in separations of particles,
the connection between the shape of non-spherical particles and
emerging lift forces remains poorly understood. In this paper, we
present some results of an LBM study of the inertial migration of
oblate spheroids in a plane channel, where the steady laminar flow
of moderate Re is generated by a pressure gradient. We perform
measurements of the lift force acting on spheroids in the stable log-
rolling regime and find that the lift coefficient depends only on their
equatorial radius a. To interpret this result, we develop a scaling
theory and derive an expression for a lift force. Our scaling expres-
sion has the power to easily predict equilibrium positions of oblate
spheroids in microfluidic channels.

Our paper is arranged as follows. In Sec. II, we define our sys-
tem and mention briefly some expressions for a lift force acting on
a spherical particle. Section III describes details and parameters of
simulations. Simulation results are discussed in Sec. IV. We then
present scaling arguments leading to an expression for a lift force.
We conclude this paper in Sec. V.

II. MODEL
We consider an oblate spheroid with an equatorial radius a and

a polar radius b < a in a pressure-driven flow between two paral-
lel walls, separated by a distance H (see Fig. 1). Its location in the

FIG. 1. An oblate spheroid orienting in a pressure-driven flow to perform a stable
log-rolling state.

channel is defined by coordinates of the center x = (x, y, z) and by a
unit vector directed along the symmetry axis n = (nx, ny, nz) (referred
below to as the orientation vector). At the channel walls and particle
surface, we apply no-slip boundary conditions.

The velocity profile in the channel in the absence of the particle
is parabolic,

U(z) = 4Umz(1 − z/H)/H, (1)

where Um = |∇p|H2/(8μ) is the fluid velocity at the channel center,
∇p is a pressure gradient, and μ is the dynamic viscosity. The (finite)
channel Reynolds number Re = ρUmH/μ, where ρ is the fluid density.

The inertial lift force drives particles across the flow stream-
lines. For spherical particles, it can be written as5,7

Fl(z) = ρa
4G2

mcl, (2)

where Gm = 4Um/H is the shear rate at the wall and cl is the lift
coefficient, given by

cl = cl0 + Vscl1 + V2
s cl2, (3)

where cli, i = 0, 1, 2, are the lift coefficients that depend on the dimen-
sionless particle position z/H, its size a/H, and Re. The dimensionless
slip velocity is defined by

Vs =
Vx
p −U(z)
Um

, (4)

where Vx
p is the x-component of the particle velocity and U is the

undisturbed fluid velocity at the particle center z. Note that it is nor-
mally considered that the slip velocity is induced by external forces
only and, consequently, does not impact a hydrodynamic lift of neu-
trally buoyant particles. However, it has been recently shown that
for neutrally buoyant particles, V s is negligibly small only in the cen-
tral portion of the channel, but not near the wall, where it becomes
finite.7

Equation (2) is widely invoked to estimate the migration veloc-
ity of neutrally buoyant (of ρp = ρ) spherical particles.13 When the lift
force is balanced by the Dean13 or external26,27 force Fex (in the case
of non-neutrally buoyant particles, ρp ≠ ρ), Eq. (2) can be applied to
find the equilibrium positions, zeq, using the force balance

Fl(zeq) + Fex = 0. (5)
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One normally assumes that Fex = Vf ex, where V = 4
3πa

3 is the vol-
ume of a sphere and f ex is the force per unit volume. For instance,
under the influence of gravity, fex = −(ρp − ρ)g. In order to employ
a similar approach to the shape-based separation of spheroids (of
V = 4

3πa
2b), it is necessary to know how the lift force scales with the

particle radii a and b and with the aspect ratio b/a.
It is of considerable interest to obtain a similar scaling equa-

tion for spheroids. However, as described in the Introduction, their
instantaneous orientation and rotation are often functions of time,
which should lead to a time-dependent lift. Nevertheless, for neu-
trally buoyant oblate spheroids of finite Rep = ρGma2/μ, the sym-
metry axis eventually becomes parallel to the vorticity direction, neq
= (0, 1, 0) (the log-rolling motion). Consequently, to predict their
long-term migration, we have to find a lift force for this steady con-
figuration. Once it is known, the equilibrium positions of oblate
spheroids (including non-neutrally buoyant too) can be found by
balancing the lift and external forces.

III. SIMULATION SETUP
To simulate fluid flow in the channel, we use a 3D, 19 veloc-

ity, single relaxation time implementation of the lattice Boltzmann
method (LBM) with a Batnagar–Gross–Krook (BGK) collision oper-
ator.28,29 Spheroids are discretized on the fluid lattice and imple-
mented as moving no-slip boundaries following the pioneering work
of Ladd.18 Details of our implementation can be found in our
previous publications.7,29–33

The size of the simulation domain is (Nx, Ny, Nz) = (128, 128,
81), with the corresponding channel height H = 80 (all units are sim-
ulation units). No-slip boundaries are implemented at the top and
bottom channel walls using mid-grid bounce-back boundary con-
ditions, and all remaining boundaries are periodic. The kinematic
viscosity is ν = 1/6, and the fluid is initialized with a density ρ = 1.
A body force directed along x with volumetric density g = 0.5, . . ., 2
× 10−5 is applied both on the fluid and on the particle, resulting in a
Poiseuille flow with Re ≃ 11, . . ., 44.

To simulate particle trajectories, we use spheroids of equatorial
radii a = 6, 8, and 12 and several aspect ratios, 0.33 ≤ b/a ≤ 1. This
range of particle aspect ratios is chosen to ensure the correct repre-
sentation of ellipsoidal shape on the grid. The particles start close to
the expected equilibrium with zero initial velocity and in log-rolling
orientation. We assume that the equilibrium is reached when the
difference between an average of the particle z-coordinate over ten
time steps and its average over the next ten steps does not exceed 1.25
× 10−6H.

To measure the lift force as a function of z, we fix the particle
in z-coordinate but let it to rotate and to move in all other direc-
tions. The particle motion starts with zero initial velocity and n = (0,
1, 0) that corresponds to the stable log-rolling state. Once a station-
ary velocity is reached, the vertical component of the force Fl(z) is
measured and is averaged over 104 simulation steps. Therefore, these
measurements also correspond (if we neglect force fluctuations) to
non-neutrally buoyant particles at equilibrium, Eq. (5).

To check if the results depend on the box size due to periodic
boundary conditions in the x-direction and y-direction, we also sim-
ulate the migration of the large sphere of a = b = 12 in a larger
simulation box with (Nx, Ny, Nz) = (256, 256, 81). The difference
in equilibrium positions for the two box sizes is 100 times smaller

FIG. 2. Velocity of a sphere of a/H = 0.1 located at a distance z from the wall
and free to rotate and translate in the x-direction (circles). The dashed curve indi-
cates calculations from Eq. (A8) representing the semi-analytical solution for a
wall-bounded shear flow. The dotted line indicates a contact with the wall.

than the typical separation of equilibrium positions of different
particles.

To test the resolution of the method in the near-wall zone,
we measure the velocity of the sphere of radius a = 8 that is freely
rotating and translating in the x-direction, whose z-coordinate is
fixed. The x-component of the velocity Vx

p is plotted in Fig. 2, along
with a semi-analytical solution for a wall-bounded shear flow34 [see
Eq. (A8)]. One can see that a sufficient accuracy is attained for sepa-
rations as small as one lattice node (z/a > 1.05), similarly to previous
results for the sphere approaching a rough wall.29

IV. NUMERICAL RESULTS AND DISCUSSION
We first simulate trajectories and orientations of freely mov-

ing neutrally buoyant spheroids of different sizes and aspect ratios
in a flow with Re = 22. Our results show that regardless of the ini-
tial position and orientation, oblate spheroids eventually reorient to
the stable log-rolling motion around the axis of symmetry and their
angular velocity is directed along the y axis, n = (0, 1, 0), ω = (0,
ωy, 0). We also observe that they focus at some distance zeq from
the wall due to the inertial migration. The rates of reorientation and
migration depend on the particle size and the aspect ratio.

In Fig. 3, we compare the rotational behavior and trajectories of
spheroids of several aspect ratios, b/a = 1 (sphere), 0.8, and 0.5, but of
the same equatorial radius a/H = 0.15. For all simulations, the initial
position and orientation are fixed to z0/H = 0.2 and n0 = (0.66, 0.75,
0). It is well seen in Fig. 3(a) that the x-component of the orientation
vector nx experiences decaying oscillations around 0, while ny con-
verges to 1. This indicates that at the beginning, particles exhibit a
kayaking motion, which then slowly evolves to a log-rolling motion
(see Fig. 1). Note that oscillations in the orientation of a spheroid
with b/a = 0.8 decrease much slower than those for a spheroid of
b/a = 0.5. The kayaking motion is responsible for the oscillations
in trajectories shown in Fig. 3(b). We see that for a spheroid of b/a
= 0.8, the migration to the equilibrium position is faster than that for
a spheroid of b/a = 0.5, although the particle trajectory is much less
affected by the kayaking motion. Another important observation is
that the equilibrium positions for all spheroids are very close, point-
ing strongly that they are defined by the equatorial radius a. This
result is consistent with reported experimental data.10,11 To validate
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FIG. 3. (a) x-components (colored curves) and y-components (black curves) of the
orientation vector and (b) trajectories for spheroids with a/H = 0.15 and b/a = 0.5
(solid curve), 0.8 (dashed curve), and 1 (dotted curve).

this finding, below, we compute zeq for spheroids of different sizes
and aspect ratios.

Let us now fix several a and simulate zeq as a function of b/a.
The results for a lower equilibrium position are plotted in Fig. 4.
As expected, zeq strongly depends on a but is practically indepen-
dent of the aspect ratio of spheroids. We stress that equilibrium
positions are nearly independent of Re in the range from 11 to 44
used here. The same conclusion has been made earlier for spherical
particles.7

Based on these observations, one can speculate that the lift coef-
ficient at any, not only equilibrium, z is controlled by the equatorial
radius. If so, we can suppose that the lift force on oblate spheroids of
equatorial radius a represents a product of Eq. (2) for a sphere of the
same radius and the correction f that depends on the aspect ratio

Fl = ρa
4G2

mcl(z/H, a/H, Re)f (b/a). (6)

FIG. 4. Equilibrium positions of spheroids with fixed a/H = 0.075, 0.1, and 0.15
(open, colored, and black symbols, respectively) vs their aspect ratio.

FIG. 5. Ratio of the lift forces for spheroids and spheres of the same a com-
puted at Re = 22 using a/H = 0.075 (open symbols) and 0.15 (black symbols).
The aspect ratio b/a of spheroids in simulations is set to be equal to 0.33 (trian-
gles), 0.5 (squares), and 0.8 (diamonds). Equilibrium positions of spheroids are
marked by open (a/H = 0.075) and black (a/H = 0.15) crosses. Dotted lines show
f = b/a.

This ansatz constitutes nothing more than an assumption made
to provide the lift force that depends on z only through the lift
coefficient cl.

To verify Eq. (6), we fix the z position of a spheroid that exhibits
a stable log-rolling motion but is free to also translate in two other
directions and measure the lift force. If the form of ansatz (6) is cor-
rect, the ratio Fl/(ρa4G2

mcl) would be equal to f (b/a). In Fig. 5, we
plot this ratio as a function of the particle position and conclude
that, for a given b/a, it is nearly constant. Moreover, we see that f
≃ b/a. Note that results displayed in Fig. 5 correspond to Re = 22,
but these conclusions have been verified for Re = 11 and 44 (not
shown). Therefore, one can rewrite Eq. (6) as

Fl = ρa
3bG2

mcl(z/H, a/H, Re). (7)

Equation (7) allows one to obtain cl from the simulation data
simply by computing the ratio Fl/(ρa3bG2

m), which is expected to
depend on a/H, but not on the spheroid aspect ratio. We now cal-
culate cl for a sphere and spheroids of two aspect ratios (0.5 and
0.8, as before) using several values of a/H. The simulation results
for the central region of the channel, 0.2 ≤ z/H ≤ 0.5, are given
in Fig. 6, which fully confirms that at fixed a/H, the lift coeffi-
cient, indeed, does not depend on b/a. Using these simulation results

FIG. 6. Lift coefficients, Eq. (7), in the central portion of the channel at Re = 22
computed using a/H = 0.075, 0.1, and 0.15 (open, colored, and black symbols,
respectively). The aspect ratio b/a is equal to 0.5 (squares), 0.8 (diamonds), and
1 (circles). Dotted curves show calculations from Eq. (3) using Eqs. (A1)–(A3)
for cli .
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in the Appendix, we propose fitting expressions for the lift coeffi-
cient. Calculations from Eq. (3) using cli given by Eqs. (A1)–(A3)
are also included in Fig. 6, and we see that they fit well the simu-
lation data. The overall conclusion from this plot is that our scaling
[Eq. (7)] adequately describes the lift force in the central region of the
channel.

However, as seen in Fig. 7(a), Eq. (7) becomes inaccurate very
close to the wall, namely, when z − a ≤ 0.2a. At such small distances
between spheroids and the wall, the lift coefficient is no longer inde-
pendent of the aspect ratio, and we see that cl augments with b/a.
An explanation for the smaller cl for the spheroids compared to the
sphere can be obtained if we invoke their hydrodynamic interactions
with the wall that depend on both a and b.35 This is illustrated and
confirmed in Fig. 7(b), where the data for the particle slip velocity
near the wall are presented. It is well seen that close to the wall, V s
is finite and varies with both a and b/a. More oblate particles have a
smaller slip velocity and, therefore, experience a smaller lift force.

Additional insight into the problem can be gleaned by com-
puting the equilibrium positions for particles of an equal volume
V, but of various aspect ratios. This situation is relevant to separa-
tion experiments.10,11 We now fix a2b, so that it is equivalent to that
for a sphere of a/H = 0.1, and measure zeq at Re = 22 and differ-
ent b/a. Simulation results for neutrally buoyant oblate spheroids are
included in Fig. 8 (black symbols). It is seen that a decrease in b/a has
the effect of larger zeq/H, although rather insignificant. Since the lift
coefficient and zeq (where cl vanishes) are independent of b as fol-
lows from Eq. (7), the weak variations of zeq with the aspect ratio are
caused by the changes in values of a. Figure 8 also includes the data
obtained by Lashgari et al.24 by means of the LBM simulations at
Re = 50 (shown by stars). We see that their results agree well with our

FIG. 7. (a) Lift coefficient and (b) particle slip velocity near the wall for spheroids of
b/a = 0.5 (squares) and 0.8 (diamonds) and spheres (circles). Colored and black
symbols correspond to a/H = 0.1 and 0.15. Dotted lines indicate a contact with the
wall.

FIG. 8. Equilibrium positions for spheroids of the same volume (equivalent to
that of a sphere of a/H = 0.1) vs the aspect ratio obtained in simulations at Re
= 22 (circles). Black circles indicate neutrally buoyant spheroids, and open circles
show results for non-neutrally buoyant spheroids subject to an external force (cex

= −0.045). Stars show the simulation data obtained by Lashgari et al.24 at Re
= 50. Solid and dashed curves are calculations from Eqs. (7) and (8). In both
cases, Eq. (3) and Eqs. (A1)–(A3) are used to calculate cl and cli .

simulation results, thus confirming that at moderate Re, the equilib-
rium positions do not depend on their values. Finally, we note that
calculations from Eq. (7) using Eq. (3) for cl and Eqs. (A1)–(A3) for
cli fit the simulation data very well (solid curve).

These simulations are compared with analogs, made with the
same parameters, but in which ρp ≠ ρ and an external force is incor-
porated. The equilibrium positions of such non-neutrally buoyant
spheroids have been found from

cl(zeq/H, a/H, Re) = −
cexH
a

, (8)

obtained by using Eq. (5) together with Eq. (7), where the dimen-
sionless parameter cex that characterizes the relative value of the
external force is given by

cex =
4πfex

3ρG2
mH

. (9)

Since Eq. (8) does not include b, at constant f ex, the equilibrium
positions for particles of the same a coincide. Simulations made
with cex = −0.045 are included in Fig. 8 (open symbols) and show
that zeq/H are shifted toward the bottom wall compared to neutrally
buoyant spheroids. Note that with our parameters, Eq. (8) has only
one root, so that the upper equilibrium position cannot be attained.
Also included in Fig. 8 are the calculations from Eq. (8), where cl is
obtained using Eq. (3) with cli given by (A1)–(A3) (dashed curve).
We see that they are in good agreement with the simulation results.

V. CONCLUSION
We have presented lattice Boltzmann simulation data on the

inertial migration of oblate spheroids in the channel flow with mod-
erate Reynolds numbers. Our results show that spheroids focus to
equilibrium positions, which depend only on their equatorial radius
a, but not on the polar radius b. We invoke this simulation result to
derive a scaling expression for a lift force, Eq. (7). In this expression,
the lift force is proportional to a3b, but the lift coefficient, cl, is the
same as that for a sphere of radius a. We have also proposed fitting
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expressions allowing one to easily calculate cl. Our scaling theory
is shown to be valid throughout the channel, except in very nar-
row regions near a wall. Thus, it can be employed to predict, with
high accuracy, the equilibrium positions of spheroids in the chan-
nel. These, in turn, could be used to develop inertial microfluidic
methods for a shape-based separation.

We recall that in our work, we have limited ourselves by oblate
spheroids of b/a ≥ 0.3 and used Re ≤ 44 only, but one cannot exclude
that at lower aspect ratios and/or larger Reynolds numbers, the equi-
librium positions would depend on both radii of particles. It would
be of considerable interest to explore the validity of Eq. (7) using
other flow and oblate spheroid parameters. Another fruitful direc-
tion could be the investigation of prolate particles to develop an
analog of Eq. (7).
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APPENDIX: FITTING EXPRESSIONS FOR THE LIFT
COEFFICIENTS AND PARTICLE VELOCITY

The lift coefficient for the sphere is given by Eq. (3) and depends
on the coefficients cli and on the slip velocity V s. The latter is defined
by Eq. (4) and depends on the particle velocity Vx

p . Consequently,
to apply Eq. (7) for oblate spheroids, we have to determine cli and
Vx
p for a sphere. In this section, we propose some useful fitting

expressions for these functions.
We propose a modification of expressions for cli reported by

Asmolov et al.,7

cl0 = β0(a/H)cVCl0 (z/H), (A1)

cl1 = 4(1 − 2z/H)β1(a/H)cCMl1 (z/a), (A2)

cl2 = c
CM
l2 (z/a), (A3)

where correction factors β0 and β1 allow fitting the data for larger
particles than before. By fitting our simulation data for several a/H
(see Sec. IV), we obtain

β0 = 1 + 3.32(a/H) − 26.45(a/H)2,
β1 = 1 − 8.39(a/H) + 19.65(a/H)2.

(A4)

The coefficient cVCl0 in Eq. (A1) represents the analytical solution
obtained by Vasseur and Cox36 for point-like spherical particles in
the low Re channel flow, which can be well fitted by

cVCl0 = 2.25(z/H − 0.5) − 23.4(z/H − 0.5)3, (A5)

as suggested by Feuillebois.37 The coefficients cCMl1 and cCMl2 in
Eqs. (A2) and (A3) are those obtained by Cherukat and McLaugh-
lin38,39 for finite-size particles in a near-wall shear flow,

cCMl1 = −3.2415ζ − 2.6729 − 0.8373ζ−1 + 0.4683ζ−2, (A6)

cCMl2 = 1.8065 + 0.899 34ζ−1
− 1.961ζ−2 + 1.021 61ζ−3, (A7)

where ζ = z/a.
At relatively large distances from the wall, the particle slip

velocity (and, hence, Vx
p ) is independent of b and, unlike wall-

bounded shear flows, remains finite (see Fig. 7). Therefore, for this
central region, one can use the approximation for the sphere of
radius a. The velocity Vx

p can be presented as a sum of the solution
for a wall-bounded linear shear flow,34,40

Vx
l = U(z)h(z/a), (A8)

with

h =
200.9ξ − (115.7ξ + 721)ζ−1

− 781.1
−27.25ξ2 + 398.4ξ − 1182

at ζ < 3, (A9)

h =
1 − 5

4 ζ
−3 + 5

4 ζ
−5
−

23
48 ζ
−7
−

1375
1024 ζ

−8

1 − 15
16 ζ−3 + ζ−5

−
3
8 ζ−7
−

4565
4096 ζ−8

at ζ ≥ 3, (A10)

where ξ = log(ζ − 1), and the Faxen correction due to the parabolic
flow profile,

Vx
p = V

x
l − 4/3(a/H)2. (A11)
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