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We report results of lattice Boltzmann simulations of a high-speed drainage of liquid films squeezed

between a smooth sphere and a randomly rough plane. A significant decrease in the hydrodynamic

resistance force as compared with that predicted for two smooth surfaces is observed. However, this force

reduction does not represent slippage. The computed force is exactly the same as that between equivalent

smooth surfaces obeying no-slip boundary conditions, but located at an intermediate position between

peaks and valleys of asperities. The shift in hydrodynamic thickness is shown to depend on the height and

density of roughness elements. Our results do not support some previous experimental conclusions on a

very large and shear-dependent boundary slip for similar systems.
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Introduction.—Recently it has been well recognized that
the famous no-slip boundary condition, which has been
applied to model experiments in fluid mechanics for more
than a hundred years, reflected a mostly macroscopic
character and insensitivity of old style experiments.
Modern experiments concluded that although the no-slip
postulate is valid for molecularly smooth hydrophilic sur-
faces down to the contact [1–3], for many other systems it
does not apply when the size of a system is reduced to
micro- and nanoscales. The changes in hydrodynamic
behavior are caused by the impact of interfacial phe-
nomena, first of all hydrophobicity and roughness, on the
flow. The effect of hydrophobicity on the flow past smooth
surfaces is reasonably clear and suggests an amount of
slippage described by the condition vs ¼ b@v=@z, where
vs is the slip velocity at the wall, b the slip length, and the
axis z is normal to the surface. The assumption is justified
theoretically [4–7] and was confirmed by surface force
apparatus (SFA) [2], atomic force microscope (AFM) [1],
and fluorescence cross-correlation (FCS) [3] experiments.
Despite some remaining controversies in the data and
amount of slip (cf. [8]), a concept of hydrophobic slippage
is now widely accepted. If a liquid flows past a rough
hydrophobic (i.e., superhydrophobic) surface, roughness
may favor the formation of trapped gas bubbles, resulting
in a large slip length [9–14]. For rough hydrophilic sur-
faces the situation is much less clear, and opposite experi-
mental conclusions have been made: one is that roughness
generates extremely large slip [15], and one is that it
decreases the degree of slippage [16,17]. More recent
experimental data suggest that the description of flow
near rough surfaces has to be corrected, but for a separa-
tion, not slip [18]. The theoretical description of such a
flow represents a difficult, nearly insurmountable, prob-

lem. It has been solved only approximately, and only for a
case of the periodic roughness and far-field flow with a
conclusion that it may be possible to approximate the
actual surface by a smooth one with the apparent slip
boundary condition [19–21].
In this Letter we address the fundamental, but still open

questions of (i) whether the effect of random roughness on
the flow may be represented by replacing the no-slip
condition on the exact boundary by an effective condition
on the equivalent smooth surface, (ii) where this smooth
surface is located, depending on geometric parameters of
roughness, and (iii) does this effective condition represent
that of slip or no-slip? We will quite generally assume that
the flow near and far from the interface is a stable, laminar
flow field.
General idea and models.—To address these issues we

analyze the hydrodynamic interaction between a smooth
sphere of radius R and a rough plane (see Fig. 1). In

FIG. 1 (color online). Sketch of the system: a sphere of radius
R approaches a rough surface with a fixed area fraction �
covered by roughness elements. The separation h is defined on
top of the surface roughness at position x2 ¼ r.
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addition to its significance as a geometry of SFA/AFM
dynamic force experiments, this allows us to explore
both far and near-field flows in a single ‘‘experiment.’’
As an initial application we study roughness elements of
a fixed height r that are distributed at random uncorrelated
positions with a given probability �. Such a surface

mimics a situation explored in recent experiments [15–17].
In Cartesian coordinates x ¼ ðx1; x2; x3Þ, a separation h is
defined on top of the roughness, x2 ¼ r, which finds its
definition in the AFM experiment [15,18].
The exact solution, valid for an arbitrary separation, for

a sphere approaching a smooth plane is given by theoreti-
cal solutions of Brenner and Maude [22,23],

F1

FSt

¼ � 1

3
sinh��

�X1
n¼1

nðnþ 1Þ½8eð2nþ1Þ� þ 2ð2nþ 3Þð2n� 1Þ�
ð2n� 1Þð2nþ 3Þ½4sinh2ðnþ 1
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with FSt ¼ 6��Rv, where� is the dynamic viscosity, v is
the velocity, and cosh� ¼ h=R, � < 0. The leading term of
this expression can be evaluated as

F2

FSt
� 1þ 9

8

R

h
: (2)

At large separations, h � R, the hydrodynamic force on a
sphere turns to the Stokes formula, but at small distances,
h � R, the drag force is inversely proportional to the gap,
F2=FSt ! 9R=ð8hÞ. A consequence of this lubrication ef-
fect is that the sphere would never touch the wall in a finite
time. The flow in the vicinity of a rough surface should
deviate from these predictions. A possible assumption is
that the boundary condition at the plane x2 ¼ r should be
written as a slip condition [15]. To investigate this scenario
we suggest to present a force as a product of Eq. (2) and a
correction for slip

F3

FSt
�

�
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8

R

h

�
f�; (3)

where this correction, f�, is taken to be equal as predicted
for a lubrication force between a no-slip surface and a
surface with partial slip [24]:

f� ¼ 1
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Another assumption would be that the rough surface is
hydrodynamically equivalent to a smooth one located
somewhere between the top and bottom of rugosities (at
x2 ¼ reff ¼ r� s). As found in [18], the force can be
represented as

F4

FSt

� 1þ 9

8

R

hþ s
: (4)

At small h, expressions (3) and (4) give different asymp-
totic behavior of a drag force, F3=FSt ! 9R=ð32hÞ and
F4=FSt ! 9R=ð8sÞ. While the second scenario allows a
sphere to touch a plane, in the first model this is impossible
since the drag force diverges (but differs from the standard

lubrication asymptotics by a factor of 4). Thus, a drainage
study allows us to distinguish between these two models of
hydrodynamic flow past rough surfaces.
Simulation method.—We apply the lattice Boltzmann

(LB) method to simulate the flow field between a smooth
sphere approaching a rough plane [25–27]. The method
allows precise measurements of the force acting on the
sphere and to explore the very large range of parameters.
Besides that, in our simulations we can consider a ‘‘clean’’
situation of a hydrodynamic force and avoid effects of
surface forces which significantly complicate the analysis
of SFA/AFM data. Since the method is well established, we
only shortly describe it here. By using a discretized and
linearized version of Boltzmann’s equation,

niðxþ ci; tþ 1Þ � niðx; tÞ ¼
X
j

�ijðneqj � njðx; tÞÞ; (5)

the LB approach allows us to fully resolve the hydrody-
namics [28]. Positions x are discretized on a 3D lattice with
19 discrete velocities ci pointing to neighboring sites. Each
ci relates to a single particle distribution function niðx; tÞ
which is advected to neighboring sites at every time step.
Then, niðx; tÞ is relaxed towards a local equilibrium
neqi ð�; jÞ with a rate given by the matrix elements �ij.

Mass � and momentum j as given by moments of
niðx; tÞ are conserved. We use the natural units of the
system, i.e., the lattice constant �x for the length and the
time step �t for time. Massive particles are described by a
continuously moving boundary which is discretized on the
lattice. Momentum from the particle to the fluid is trans-
ferred such that the fluid velocity at the boundary equals
the particle’s surface velocity. Since the momentum trans-
ferred from the fluid to the particle is known, the hydro-
dynamic force can be recorded. If not stated otherwise, the
2563�x3 system contains a sphere with radius R ¼ 16�x
which is moved in the y direction at constant velocity v ¼
10�3�x=�t. The fluid density is kept constant and the
kinematic viscosity is �=� ¼ 0:1, resulting in a
Reynolds number Re ¼ 0:16. No-slip surfaces are de-
scribed by midgrid bounceback boundaries and a slip
boundary is implemented by a repulsive mean-field force
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acting between fluid and surface [7,12]. We carefully
checked the influence of system size, radius, and separa-
tion to insure that finite size and resolution effects are
negligible [29]. Also, by testing different resolutions we
assured that a lateral width of roughness elements of 1�x is
sufficient.

Results and discussion.—We test our method by mea-
suring the hydrodynamic interaction between smooth sur-
faces. Figure 2 shows the normalized hydrodynamic force
for two simulation sets. In the first one, a sphere of R ¼
8�x is driven with v ¼ 10�4�x=�t. In the second run the
sphere is twice as large, R ¼ 16�x, and the driving veloc-
ity is an order of magnitude larger, v ¼ 10�3�x=�t.
Figure 2 includes the exact theoretical curve, Eq. (1).
The fit is excellent for all separations, indicating that large
shear rates do not induce any slip, a conclusion which does
not support recent experimental data [8]. Note that the first-
order approximation, Eq. (2), practically coincides with the
exact solution. These simulations demonstrate that finite
size effects and resolution effects can be well controlled:
for h < 2R a 2563�x3 system is found to be sufficient to
avoid artefacts at large separations h [29]. Separations
<1�x are excluded from the analysis since the finite
resolution leads to larger deviations. Also included in
Fig. 2 is a normalized force measured near a rough wall
(� ¼ 4%, r ¼ 10�x), which at small distances is much
smaller than predicted by Eq. (1). This is qualitatively
consistent with the AFM observations [1,15], but in con-
trast to the SFA data [17], which likely reflects a different
way of a definition of zero separation in the SFA (at the
bottom of asperities).

To examine the significance of roughness more closely,
the force curves from Fig. 2 are reproduced in Fig. 3 in
different coordinates. Figures 3(a) and 3(b) are intended to
indicate that both near-field and far-field theoretical
asymptotics for smooth surfaces are well reproduced in
simulations. Figures 3(c) and 3(d) show that simulation
data for a rough surface (� ¼ 4%, r ¼ 10�x) show devia-
tions from the behavior predicted by Eq. (1). A possible
explanation for this discrepancy is that we invoke slippage
at the wall, as modeled by Eq. (3). This is illustrated in

Figs. 3(c) and 3(d), where the simulation data are com-
pared with another theoretical calculation in which a con-
stant slip length of b ¼ 2:55�x, obtained from the best
possible fit of the force curve, is incorporated in the model.
This has the effect of decreasing the force, and it provides a
reasonable fit to the data down to h=R� 3, but at smaller
gap the simple model of slip fails to describe simulation
data, by predicting a larger force and its different asymp-
totic behavior. This suggests, that it can only be considered
as a first approximation, valid at large distances from the
wall. This conclusion is consistent with early results ob-
tained for a far-field situation [19–21], but does not support
recent AFM data [15]. However, as shown by the simula-
tion data, Eq. (3) is well applicable in the case of a slippery
wall. An alternative explanation for the smaller force com-
pared to the theory for smooth surfaces, Eq. (1), can be
obtained if we assume that the location of an equivalent
effective wall, where no-slip boundary conditions are ap-
plied, should be shifted, as modeled by Eq. (4). A corre-
sponding theoretical calculation of the drag force is shown
in Figs. 3(c) and 3(d). This estimate requires knowledge of
the effective wall position reff . The value reff ¼ 7:86�x
was obtained from the fit of the measured force curve and
is enough to give a good match to the data at very small
distances, which confirms the conclusions of a recent
experiment [18].
By performing similar fits for a variety of drainage runs

with different � and for surfaces with different height of
roughness elements (r ¼ 10�x and r ¼ 20�x) as well as
its different lateral width (�x and 2�x) we find that the
same conclusion is valid for all situations, but reff=r is

FIG. 2. Hydrodynamic force acting on a sphere with radius
R ¼ 16�x (triangles) and R ¼ 8�x (circles) driven to a smooth
wall with velocity v ¼ 10�3�x=�t and v ¼ 10�4�x=�t, corre-
spondingly. The solid and dashed curves are calculations of the
force expected with no-slip boundary conditions at the wall
[Eqs. (1) and (2)]. Squares are the results measured for a rough
wall (� ¼ 4%, r ¼ 10�x).

FIG. 3. Hydrodynamic force plotted in different coordinates.
(a),(b) the data sets for smooth surfaces reproduced from Fig. 2;
(c),(d) show the force for two rough planes with r ¼ 10�x, � ¼
4% and � ¼ 50%. For � ¼ 4% the asymptotic behavior for
small h cannot be fitted with a slip, but the assumption of an
effective boundary position holds. The values for � ¼ 50%
recover the case of a flat surface at r. The data for a smooth
slip boundary confirms the validity of Eq. (3).
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itself a function of � (being surprisingly insensitive to the
value of r). In Fig. 4 we examine this in more detail. The
simulation data show that reff required to fit each run
increases from 0 to r very rapidly, so that at � ¼ 20%
it is already above 0:9r, and at � ¼ 50% it is almost equal
to r. This is illustrated by including the data obtained for a
larger density of roughness elements (� ¼ 50%, r ¼
10�x) in Fig. 3(c), that do not show a discernible deviation
from the theoretical predictions for smooth surfaces. Thus,
a small number of roughness elements has enormous in-
fluence on film drainage, confirming earlier theoretical
ideas [30].

Conclusion.—We have presented lattice Boltzmann
simulations describing the drainage of a liquid confined
between a smooth sphere and a randomly rough plate. The
measured force is smaller than predicted for two smooth
surfaces if the standard no-slip boundary conditions are
used in the calculation. What our results show, however, is
that at small separations the force is even weaker and
shows different asymptotics than expected if we invoke
slippage at the smooth fluid-solid interfaces. To explain
this we use the model of a no-slip wall, located at an
intermediate position (controlled by the density of rough-
ness elements) between the top and bottom of the asper-
ities. Calculations based on this model provide an excellent
description of the simulation data. In addition to proving a
correctness of this simple model to describe flow past a
randomly rough surface, we have suggested the validity of
a number of simple formulas for a hydrodynamic drag
force. Although formally they can only be considered as
first-order approximations, their accuracy is confirmed by
simulation. Our results open the possibility of solving
quantitatively many fundamental hydrodynamic problems
involving randomly rough interfaces, including contact
angle dynamics, coagulation, and more.
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