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By means of lattice-Boltzmann simulations the drag force on a sphere of radius R approaching a
superhydrophobic striped wall has been investigated as a function of arbitrary separation A. Super-
hydrophobic (perfect-slip vs. no-slip) stripes are characterized by a texture period L and a fraction
of the gas area ¢. For very large values of 4/R, we recover the macroscopic formulae for a sphere
moving towards a hydrophilic no-slip plane. For #/R = O(1), the drag force is smaller than predicted
by classical theories for hydrophilic no-slip surfaces, but larger than expected for a sphere interacting
with a uniform perfectly slipping wall. At a thinner gap, # < R the force reduction compared to a
classical result becomes more pronounced, and is maximized by increasing ¢. In the limit of very
small separations, our simulation data are in quantitative agreement with an asymptotic equation,
which relates a correction to a force for superhydrophobic slip to texture parameters. In addition, we
examine the flow and pressure field and observe their oscillatory character in the transverse direction
in the vicinity of the wall, which reflects the influence of the heterogeneity and anisotropy of the
striped texture. Finally, we investigate the lateral force on the sphere, which is detectable in case
of very small separations and is maximized by stripes with ¢ = 0.5. © 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4861896]

. INTRODUCTION

Superhydrophobic (Cassie) surfaces are able to trap air
at the liquid-solid interface, leading to remarkable wetting
properties, such as a very large water contact angles and low
hysteresis.! They can also have an impact on the dynam-
ics of the liquid. For instance, the water drop slides or rolls
with amazingly large velocity, and a drop hitting such a ma-
terial just bounces off.> These macroscopic dynamic studies
raised a question of a remarkable drag reducing ability of
superhydrophobic materials, which could be extremely im-
portant for microfluidic lab-on-a-chip systems.>® The flow
of liquids near superhydrophobic surfaces is a subject that
currently attracts much exper1111ental,7‘9 simulation, %% and
theoretical'*~!® research efforts.

Such a superlubrication potential could also dramat-
ically modify a hydrodynamic interaction between dif-

oo

ferent surfaces. Therefore, it appears timely to consider
the hydrodynamic interaction of a hydrophilic sphere
with a superhydrophobic surface. Such a configuration is
relevant for many surface forces apparatus and atomic
force microscope dynamic force experiments,'>? it rep-
resents a typical situation of phenomena of “viscous
adhesion,” coagulation, and more. However, despite its
importance for force experiments and numerous applica-
tions, the quantitative understanding of the problem is still
challenging.

The exact solution, valid for an arbitrary separation, for
the drag force on a sphere moving towards a flat wall is known
only for a situation when both interacting surfaces are hy-
drophilic (i.e., characterized by hydrodynamic no-slip bound-
ary conditions). This was derived by Brenner’! and Maude?”
and is given by
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Here, F, is the Stokes drag on a sphere moving in an un-
bounded fluid,

Fg, = 6w R, 2)

u is the dynamic viscosity of the liquid, v and R are the ve-
locity and the radius of the sphere, coshé = A/R, § < 0, and
h is the distance between the apex of the sphere and the wall.

Let us remark that at large separations, & > R, the two-
term expansion of Eq. (1) gives*

9R
FM’:FS[ <]+§z> (3)

Equation (3) is surprisingly accurate even outside of the range
of its formal applicability, and can be used in a very large in-
terval of 4/R. However, at small distances Eq. (3) gives Fj/F,
=~ 9R/(8h), and therefore deviates from the Taylor formula rig-
orously derived for the lubrication limit, /R < 1
R
Fr >~ Fg—. 4)
h

Equations (1) and (4) have been verified for hydrophilic
surfaces.?*2° However, their use in other situations is beset
with difficulties. There is a large literature describing attempts
to answer questions of a validity of Egs. (1) and (4) for hy-
drophobic and heterogeneous surfaces, and to provide a more
general theory of hydrodynamic interactions. We mention be-
low what we believe are the more relevant contributions, con-
centrating on the case of a hydrophilic sphere and hydropho-
bic or superhydrophobic flat wall.

Hydrophobic surfaces reduce drag, which is associated
with a partial slippage of the fluid (characterized by a con-
stant scalar slip length).?’-?® Although there is some literature
describing the motion of a hydrophilic sphere parallel to a hy-
drophobic surface,?3! information about the motion towards
a slippery wall is rather scarce. Vinogradova’>3 proposed a
modification to the Taylor equation, Eq. (4). She has argued
that it is convenient to describe a modification of a drag force
in terms of a correction for slippage

*,\,FZ 5
f_F_T, ()

and suggested general analytical expressions to relate f* and
the slip length of interacting bodies. In case of an interaction
of a hydrophilic sphere with a hydrophobic plane with a slip
length b, the theory predicts

o F 1 1+3h 1+h
T Fr 4 2b 4p

o | -

In what follows f* can significantly decrease the hydrody-
namic resistance force provided % is of the order of 4b or
smaller. In case of a perfect slip, b = oo, Eq. (6) predicts
f* = 1/4. The drag force however still remains inversely de-
pendent on the gap as it is predicted by the Taylor theory.
Later, Lauga and Squires** studied a sphere approaching a
hydrophobic wall at very large separations, and obtained an-
alytically a kind of small, of the order of R/h, correction to
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Eq. (3). We are unaware of any previous work that has ad-
dressed the question of hydrodynamic interaction with a hy-
drophobic plane at arbitrary separation and sphere radius.
Note however that by symmetry reasons the problem of an
interaction of a sphere with a perfectly slipping wall (b = c0)
is equivalent to that of the motion of two equal spheres (sepa-
rated by a twice as large distance) towards each other.33°

The flow past superhydrophobic surfaces is more com-
plex. In this situation, it is advantageous to construct the ten-
sorial effective slip boundary condition, which mimics the ac-
tual one along the true heterogeneous surface.* '>%7-38 During
the last few years several papers have been concerned with the
interaction of a sphere with heterogeneous superhydrophobic
surfaces. Very recently, Asmolov et al.’° developed a theory
in the limit 7 <« R, L < R, where L is a period of the tex-
ture. For the general case i = O(L), the force should be found
numerically. However, for some limiting cases the asymptotic
equations have been derived. When the gap is large compared
to the texture lengthscale, L < h < R, the force reads3%-40

I
beff + beLff

] —
f TR

(N
with bgff longitudinal and b; transverse slip lengths. In the
opposite limiting case of a thin gap, &7 < min {b, L} < R, the
correction for a superhydrophobic slip depends on the fraction
of a gas/liquid area only.***!

The purpose of this lengthy introduction has been to show
that despite its importance for dynamic force and particle
suspensions experiments, the hydrodynamic interactions of
a hydrophilic sphere with a superhydrophobic (and even hy-
drophobic) plane remain poorly understood. A key difficulty
is that there is no general analytical or semi-analytical theory
describing hydrodynamic flows even on smooth hydrophobic
surfaces, and on composite surfaces analytical results (and
in fact even numerical results) for the drag force have only
been obtained in simple lubrication geometries and specific
limits. Therefore, many aspects of a hydrodynamic interac-
tion of a sphere with superhydrophobic surfaces have been
given insufficient attention. The present paper employs the
lattice Boltzmann simulation to extend and generalize earlier
analysis.

Our paper is arranged as follows. In Sec. II, we de-
fine our system, summarize earlier relevant hydrodynamic
relationships, and present some new theoretical estimates.
Section III discusses our simulation method and justifies the
choice of parameters. Results are discussed in Sec. IV and we
conclude in Sec. V.

Il. MODEL AND THEORETICAL ESTIMATES

We first present our model and basic theoretical relation-
ship relevant for our analysis. Here, we mostly make use of
the results presented earlier with some new interpretation.

We consider a hydrodynamic interaction of a hydrophilic
sphere with an idealized superhydrophobic surface in the
Cassie state (sketched in Fig. 1), where a liquid slab lies
on top of the surface roughness. To illustrate the approach,
we focus here only on a periodically striped surface. Such
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FIG. 1. Sketch of the simulated system. A sphere is approached towards a
striped superhydrophobic wall.

canonical textures are often employed in experiments and are
convenient to explore the basic physics of the system since
the local (scalar) slip length varies only in one direction and
is piecewise constant, thus allowing us to highlight effects of
anisotropy.

The liquid/gas interface is assumed to be flat with no
meniscus curvature, so that the modeled super-hydrophobic
surface appears as a perfectly smooth with a pattern of bound-
ary conditions. Similar assumptions have been made in most
previous publications.'® %4142 In this idealization, we have
neglected an additional mechanism for a dissipation con-
nected with the meniscus curvature,'>*4* which may have an
influence on a hydrodynamic force. Note however, that such
a situation is not unrealistic, and has been achieved in many
recent experiments.& 19,45

Let u; = (uy, uy, 0) be the fluid velocity along the wall,
and b(y) is the local slip length, which switches between
two values, b = oo over gas/liquid regions and b = 0 over
solid/liquid areas. This means that we set the shear-free
boundary condition over the gas/liquid regions,

ou,
9z

and the no-slip boundary condition at a solid/liquid interface,

=0, ®)

u, =0. ©))

We remark that by assuming (8), the viscous dissipations in
the gas phase, which are expected to decrease the local slip
length according to a “gas cushion model,”*? have been ne-
glected. Therefore, our present results thus propose an upper
bound for the local slip length at the gas areas. They could be
generalized to the situation with a finite (i.e., of the order of
L and smaller) slip length b(y) on the gas/liquid interface, but
we leave this generalization for future work. By assuming no-
slip, Eq. (9), at the solid area we neglect a hydrophobic slip-
page, which is justified provided the nanometric slip length at
solid areas is small compared to a texture period.*#6-48
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The fraction of gas/liquid area is given by ¢, and the frac-
tion of solid/liquid areas is then 1 — ¢. When ¢ = 0 and
¢ = 1, the wall becomes homogeneous.

In the limit of a thick channel (k2 >> L), the eigenvalues of
the slip-length tensor are given by*

L ¢
bk ~ > In [sec <7)i| . by~ 2% (10)

As proven in Ref. 50, Eq. (10) is also accurate and can safely
be used in case of partial slip at the gas sectors, provided
b > L. The correction to Eq. (4) is then

s o3k ¢ 1
o~ T n[sec(T)] (11)

In the limit of a thin channel (h <« L) with one hy-
drophilic and one superhydrophobic wall, the effective slip
of a surface decorated by perfectly slipping stripes is'>

I-9¢)
4¢

and the correction for superhydrophobic slip takes the
form3%:41

bt ~h . bl ~ bk, (12)

24-3

lll. SIMULATION

In this section, we present our simulation method and jus-
tify the choice of parameters.

For our computer experiment, we chose a scheme based
on the lattice Boltzmann method which was successfully em-
ployed earlier in comparable contexts.!>2331:32 Here, the lat-
tice Boltzmann method serves as a Navier-Stokes solver for
the bulk fluid flow.>* Moving boundaries are employed to de-
scribe the momentum exchange between the fluid and a sus-
pended sphere following the method summarized in Ref. 54.
In addition, an on-site slip boundary condition is used to de-
scribe the striped substrate.’>> A more detailed introduction
to the simulation algorithm follows below.

The Boltzmann equation

[%—i—u-vr} fr,u, 1) =Q, (14)

expresses the dynamics of the single particle probability den-
sity f(r,u, r), where r is the position, u is the velocity, and
t is the time. The left-hand side of Eq. (14) models the prop-
agation of particles in phase space, while the right hand side
accounts for particle interactions by means of the collision
operator £2.

By discretizing positions, velocities and time, a discrete
variant of Eq. (14) can be obtained which is known as the
lattice-Boltzmann equation

file+cp, t + A1) — fr(r,t) =%, k=0,1,...,B.

as)

The lattice-Boltzmann equation describes the kinetics in dis-
crete time- (Af) and space-units (Ax). In the scope of this
work, we employ the so-called D3Q19 lattice, referring to 3
dimensions and 19 discrete velocity vectors ¢x; k = {0... 18}
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in direction of the B = 18 nearest neighbors of a cube as well
as a zero velocity. For convenience and without loss of gener-
ality, the scaling factors Ax and At are chosen to be of unity
throughout the remainder of the text.

The use of the lattice Bhatnagar-Gross-Krook collision
operator

1
Q= ——(fur,n) = [0, pr ). (16)

which assumes relaxation on a linear timescale T towards
a discretized local Maxwell-Boltzmann distribution f,f 7 s
sufficient to recover a second order accurate solution of the
Navier-Stokes equations.’” The kinematic viscosity v = (21
— 1)/6 of the fluid is related to the relaxation time scale.
In this study, the latter is kept constant at t = 1. Macro-
scopic flow properties can be related to stochastic moments
of f, where the fluid density p(r, t) = pp >, fi(r, t) and mo-
mentum p(r, Hu(r, t) = py y_, ¢ fi(r, t) are of special inter-
est (po denotes a reference density).

We use a simulation cell confined by two impermeable
walls at z = N, and z = 0. At an upper wall, we apply no-slip
boundary conditions by means of a simple mid-grid bounce
back boundary condition. A bottom wall is modeled by pat-
terns of a local slip length on a planar surface. More specif-
ically, we impose patches of zero and infinite slip-lengths by
using (a second order accurate) fixed velocity boundary con-
dition as it was described in Ref. 56 and then used in several
applications in Refs. 12, 52, and 55. The alternating perfect
slip and no-slip stripes are aligned in x-direction and are of
the widths ¢L and (1 — ¢)L, respectively. We vary ¢ with
the step size of 0.25 from O to 1. In x- and y-directions, the
simulation domain is limited by periodic boundaries.

Following the approach of Ladd and Verberg,’* the hy-
drophilic sphere is implemented as a no-slip boundary mov-
ing with constant velocity v. To determine the momentum
transferred to the fluid as the sphere moves, both the center
of mass velocity and the particle rotation are taken into ac-
count. While the boundary moves on the fluid lattice, its dis-
cretization is constantly adopted. This causes fluctuations in
the measured forces which we suppress by averaging the mea-
surement over approximately 1000 timesteps.?>! The system
resolution has to be balanced between an optimal approxima-
tion of the model and computational cost.

The cell height N, has to be sufficiently large to allow
to disregard the influence of the upper wall on the flow field.
However, it should be as small as possible to keep calculation
times within acceptable limits. To find the most suitable N,
we studied the influence of the upper surface on the results.
When the sphere radius is small compared to the height of the
box, the first-order correction to the drag due to the upper wall
is inversely proportional to its separation from the sphere.®
We thus propose the following equation to fit the data:

Fz = Ftheor + FSf (17)

N, —2R—h’

z

where Fieor 1S the theoretical prediction for the drag in the ab-
sence of the upper wall. Equation (17) allows us to estimate
the effect of the upper wall on the interaction for different V..
We simulated the drag force acting on a sphere approaching

J. Chem. Phys. 140, 034707 (2014)
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FIG. 2. The drag force vs. separation curve obtained for two different heights
of the simulation cell, N/R = 8 (open symbols) and N./R = 16 (red symbols).
The upper data set corresponds to the interaction of a sphere with the no-slip
wall. The lower data set is obtained for the interaction with the perfectly
slipping wall. Solid lines show the theoretical value calculated using Eq. (1).
Dashed-dotted (N, = 8) and dashed (N, = 16) lines are given by Eq. (17).

the homogeneous bottom wall, and considered two limiting
cases. Namely, of a no-slip bottom wall, ¢ = 0, and of a per-
fectly slipping wall, ¢ = 1, where exact theoretical solutions
are known. We recall that in case of a no-slip wall the drag
force is given by Eq. (1), and that in case of perfectly slipping
wall the drag force is equivalent to that for two approaching
spheres at twice larger distance.>>3® We have plotted simula-
tion results obtained with N,/R = 8 and N,/R = 16 in Fig. 2.
Also included are the theoretical predictions and the theoret-
ical values recalculated by using Eq. (17). A general conclu-
sion from this plot is that N,/R = 16 allows us to neglect
the influence of the upper wall for 4//R < 1. For smaller cell
height, N,/R < 16, or larger gaps, h/R > 1, the influence of
the upper boundary cannot be ignored. Note however that the
data for N./R = 16 are in good agreement with predictions of
Eq. (17).

Similar remarks concern the lateral size of the system,
which should be sufficiently large to minimize (without ex-
ceeding feasible computation times) the influence of mirror
spheres acting across the periodic boundaries. The periodic
boundary conditions can be properly accounted for by intro-
ducing an effective corrected radius, which difference from
R does not exceed 2% for N/R = Ny/R = 8.233! Finally, we
note that the radius of the sphere should also be large enough
to model analogy with an actual sphere rather than a stair-
cased construction. A further requirement introduced by the
theory is the radius to be significantly larger than L. However,
the width of a single stripe has to be resolved by at least four
lattice sites to avoid unacceptable discretization errors.?33!:5

Taking into account above constraints and comparing dif-
ferent possible configurations, we have determined a mini-
mal set of simulation parameters given by: N, = N, = 256,
N, = 512, R = 32, L = 16. Furthermore, selected runs have
been repeated at double resolution in order to approximate the
discretization errors introduced.

IV. RESULTS AND DISCUSSION

In this section, we present our simulation results. More
specifically, we discuss simulation data obtained for normal
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and lateral forces in the system, and also give some detailed
analysis of a fluid velocity field and a pressure distribution.

A. Normal force

Here, we present the simulation results for the interaction
of a sphere with striped surfaces defined by different fractions
of the gas phase. In order to assess the validity of the above
lattice-Boltzmann approach, we first measure the hydrody-
namic force on a sphere approaching uniform non-slipping
(¢ = 0) and perfectly (¢ = 1) smooth walls, where theoretical
solutions are known, i.e., verify Eq. (1) and results of Refs. 35
and 36. Fig. 3(a) shows the simulation results and theoretical
curves for a normalized vertical force, F,/F, as a function of
h/R. The quantitative agreement between the simulation and
theoretical results is excellent for all separations. This demon-
strates the accuracy of our simulations. It can be seen that in
case of a perfectly slipping wall the force at small distances
is much smaller than predicted by Eq. (1). To examine the
short-distance region in more detail, the data from Fig. 3(a)
are reproduced in Fig. 3(b) in different coordinates. Fig. 3(b)
is intended to indicate that short-distance theoretical asymp-
totics for smooth surfaces is well reproduced in simulations,
and we emphasize that it is well seen that in both cases when
h < R the force becomes inversely proportional to the gap as
predicted by Egs. (4) and (6). It is intuitively clear that in case
of patterned superhydrophobic surfaces the force should be
confined between these two limiting curves. The force curve
simulated with ¢ = 0.5 is included in Fig. 3. Note that here
and in simulations below the default location of the apex of
the sphere is above the boundary between no-slip and perfect-
slip stripes (as shown in Fig. 1) unless another configuration is
specified. The computed curve indeed shows the drag smaller
than for a no-slip wall, but larger than for a perfectly slip-

02 04 06 038 1 12 14
h/R

5 10 15 20 25
R/h
FIG. 3. (a) and (b) Hydrodynamic force on a sphere approaching a wall plot-

ted in different coordinates. Symbols from top to bottom are the simulation
data for ¢ =0, 0.5, and 1. Solid curves show theoretical predictions.
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0 0.2 0.4 0.6 0.8
h/R

FIG. 4. Correction for superhydrophobic slippage, F,/Fa vs. h/R (red sym-
bols). From top to bottom ¢ = 0, 0.25, 0.5, 0.75, and 1. Gray circles show
the predictions of Eq. (13). Solid curves plot the theoretical results for no-slip
and perfectly slipping walls.

ping wall. Fig. 3 includes theoretical curves calculated within
the lubrication approach (i.e., justified provided & < R).* A
striking result is that predictions of the lubrication-type the-
ory are in a very good quantitative agreement with simulation
results.

We now investigate the effect of the gas fraction, ¢, on the
drag force. The measured data are presented in Fig. 4, which
shows F,/F), as a function of A/R. The ratio F,/Fy; denotes
the correction for superhydrophobic slippage to the force ex-
pected between two hydrophilic surfaces. This is well seen
in Fig. 4, which indicates that F,/F); = 1 at ¢ = 0. It can
also be seen that the correction factor decreases with ¢, i.e.,
the force becomes smaller than predicted by Eq. (1). As ex-
pected, all curves are confined between two limiting forces,
obtained for ¢ = 0 and ¢ = 1. We should like to stress that
the correction for superhydrophobic slippage is long-range,
and the deviations from Eq. (1) are discernible even at /R
= O(1), especially for large ¢. At small /R, this discrepancy
becomes significant, and F,/F); approaches its minimal value
at a given ¢. In the lubrication limit, R >> L > h, these val-
ues can be evaluated with Eq. (13). Given the approximations
required to derive Eq. (13) we do not expect it to be accurate
for our system since the sphere radius in the simulation is not
large enough, R/L = 2. However, calculations with Eq. (13)
shown in Fig. 4 coincide with the simulation. This surpris-
ing result suggests that Eq. (13) is more general that it was
assumed originally.

B. Fluid velocity and pressure distribution

Since our wall is a highly anisotropic striped surface it is
instructive to study the velocity and excess (as compared to
the ambient pressure at infinity) pressure, p, in the gap.

Fig. 5 shows vector u, and contour |u;| fields measured
for h = 3L/4 in the cross-section close to the wall, z = L/8.
We see that the velocity is nonuniform throughout the liquid.
Note that there is a discernible asymmetry of the flow around
the x-axis, which obviously reflects the location of the sphere
apex above the edge of the stripes. The velocity contour lines
are significantly elongated in the longitudinal direction, which
indicates that liquid preferably flows along the stripes. The
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FIG. 5. Vector and contour fields of the lateral velocity at the cross-section z
= L/8 simulated for 7 = 3L/4. No-slip stripes are shown by gray, and perfect-
slip stripes by white color.

velocity is very small near the center, x = y = 0, and at large
distances from the axis, x> + y2 > I %, where the gap becomes
large. It has been earlier predicted that for no-slip>> and uni-
formly slipping® walls, where the flow is radially symmetric,
and at thin gaps, 7 < R, the maximum velocity is attained
at distances from the center of the order of (Rh)"?. It can be
seen that the maximum velocity in our case is also observed
at distances of the order of (Rh)"?. However, due to a strong
anisotropy of the flow we also observe local velocity max-
ima and minima over perfect-slip (white regions) and no-slip
stripes (gray regions), respectively.

To examine the significance of anisotropy of the texture
in more details, we have investigated the distributions of lat-
eral velocity and the excess pressure in the longitudinal and
transverse directions. Figs. 6(a) and 6(b) show the velocity in
eigendirections measured at two cross-sections. One is chosen
to be in the vicinity of the wall (z = L/8), and another one is
closer to the sphere (z = L/2). It can be seen that at a small dis-
tance from the striped wall (Fig. 6(a)), the longitudinal veloc-

(@) A A 0

> > i
~ 1 ~
S 05 \ - 05 , '

98—6—4—2 02 46 8 98—6—4—2 02 46 8

XLyl x/L,y/L
50 50
w0 © @
2,30 330
T 20 T 20

10

X/L,y/L

0
-8-6-4-2 0 2 4 6 8

10

0
-8-6-4-2 0 2 4 6 8

x/Ly/L

FIG. 6. Distributions of lateral liquid velocity and pressure taken at the cross-
sections z = L/8 (a) and (c) and z = L/2 (b) and (d) and in longitudinal
(dashed curves) and transverse (solid curves) directions. Measurements are
performed at the fixed gap thickness & = 3L/4. No-slip and perfect-slip re-
gions are shown by gray and white stripes.
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ity behaves qualitatively similar to what is expected for uni-
form walls.>>® More precisely, it is zero near the origin of
coordinates, has maxima at some distance from it, and decays
at larger distances. The transverse velocity shows irregular os-
cillatory behavior, which is a reflection of the striped texture
since the oscillations have a period L. The oscillation maxima
nearly coincide with the amplitude of the longitudinal veloc-
ity and are detected at the middle of the perfect-slip stripes.
The minima are observed at the centers of no-slip regions, and
here the transverse velocity is much smaller than longitudinal.
This result is similar to obtained earlier for weakly slipping
stripes.’” At larger distance from the striped wall (Fig. 6(b)),
the flow is nearly isotropic, and we do not observe any oscilla-
tion of the amplitude of the transverse velocity. We also note
that this cross-section is characterized by a faster flow.

In Figs. 6(c) and 6(d), we plot the simulated pressure
at the same cross-sections. Perhaps the most important con-
clusion from these plots is that despite an anisotropy of the
flow, the averaged over the texture period L pressure is nearly
isotropic. Similar results have been already obtained numer-
ically, but only in the lubrication limit, L, & < R.** Another
important point to note is that pressure is the same for the
two cross-sections, i.e., it does not depend on z being nearly
constant across the gap, as in the lubrication theory. Abrupt
changes of the pressure in the transverse direction can be seen
in Fig. 6(c), which corresponds to the cross-section close to
the wall. In contrast to oscillations of a transverse velocity,
the local maxima and minima of pressure are located at the
boundary between perfect-slip and no-slip stripes. The pres-
sure for flows across the stripes was predicted to diverge at
the wall, z = 0, near the jump in b(y): p x r~12 where
r < L is the distance from the border between stripes.'® Our
simulation results do confirm qualitatively these theoretical
predictions, but of course a quantitative agreement cannot be
obtained since we measure pressure at some finite distance
from the wall, and also because in simulations pressure is al-
ways finite.

C. Lateral force

Finally, we consider the lateral force on the sphere, which
could be present in addition to the normal drag force. In most
real experiments, the alignment of the sphere and stripes is
inconvenient or difficult, so the sphere could be in different
positions relative to the wall texture. In our simulations, we
explore four representative cases as shown in Fig. 7(a). Two
configurations, 1 and 3, where the apex of the sphere is lo-
cated above the center of a no-slip or a perfect slip stripe, are
symmetric. Therefore, the lateral force is expected to be ab-
sent. Since the asymmetry is maximized in two other configu-
rations, 2 and 4, where the sphere is above the border between
stripes, we consider them with the goal to maximize the lat-
eral force. We recall that our above analysis corresponds to a
sphere in a position 2.

We show in Fig. 7(b) the simulation results for the lat-
eral force obtained with ¢ = 0.5, which corresponds to maxi-
mum transverse flow in a thin channel situation.'"->* The sim-
ulation data demonstrate that the lateral force is measurable
only when the sphere is very close to the wall, /R < 0.05,
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FIG. 7. (a) Illustration of four possible sphere positions relative to the texture. (b) Lateral forces at fixed ¢ = 0.5 simulated for different locations of the sphere
relative to stripes. (c) Lateral forces for a sphere in position 2 simulated with different ¢.

and that it is three orders of magnitude smaller than the nor-
mal drag force. These results also clearly show the impor-
tance of a location of a sphere relative to stripes in generating
the lateral force. They illustrate that the lateral force vanishes
in positions 1 and 3, is positive for position 2, and negative
for position 4. This indicates that in the asymmetric position
the lateral force pushes the sphere towards the center of the
perfect-slip stripes, where the friction is lower. We remark
that recently Pimponi et al.® studied numerically the particle
motion in the vicinity of the striped wall and reported similar
behavior of a lateral force of small magnitude.

The detailed comparison between the simulation results
obtained with a different fraction of the gas/liquid area is then
shown in Fig. 7(c). We see that the maximal force is indeed
obtained for the stripes with equal area fractions, ¢ = 0.5,
which correlates well with earlier theoretical predictions of
transverse phenomena in thin channels.”® The weaker lateral
force is detected for ¢ = 0.25 and 0.75, and it disappears for
a homogeneous surface, ¢ = 0 and 1.

Coming back to the normal force, a similar study of the
role of the sphere location shows that the changes in the
normal force are detectable at & < R, but they never ex-
ceed 1% and can therefore safely be ignored. As a side note,
one may remark that all our results have been obtained for
R = O(L) and could not be immediately applied to the situa-
tion of R <« L, where the effect of a sphere location on the
normal force might become significant. This case however
is beyond the scope of present work and will be discussed
elsewhere.

V. CONCLUSION

In conclusion, we have presented simulation data for a
hydrodynamic interaction of a sphere moving towards a su-
perhydrophobic striped plane. We checked the validity of our
approach by reproducing the known theoretical predictions
for uniform no-slip and perfectly slipping walls. The simu-
lation results show that the drag force acting on a sphere ap-
proaching the striped wall is confined between these two lim-
iting solutions, and that the magnitude of the force depends
strongly on the fraction of gas/liquid areas. A quantitative
agreement with earlier predictions of a force in the limit of
a thin gap has been obtained. We have also examined the flow
field and detected an oscillatory character of its transverse

component in the vicinity of the wall, which reflects the influ-
ence of the heterogeneity and anisotropy of the striped texture.
Our analysis of pressure data led to a conclusion that despite
an anisotropy of the texture the average pressure in the gap
remains surprisingly isotropic. However, in the vicinity of the
wall we observed abrupt jumps in pressure in the transverse
direction, which correlate well with earlier predicted singular-
ities at the border of no-slip and perfect-slip stripes. Finally,
we investigated the lateral force on the sphere, and found that
it is detectable in the case of the thin gap and also depends
strongly on the fraction of the gas areas.
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