6,603 research outputs found

    A new paradigm for SpeckNets:inspiration from fungal colonies

    Get PDF
    In this position paper, we propose the development of a new biologically inspired paradigm based on fungal colonies, for the application to pervasive adaptive systems. Fungal colonies have a number of properties that make them an excellent candidate for inspiration for engineered systems. Here we propose the application of such inspiration to a speckled computing platform. We argue that properties from fungal colonies map well to properties and requirements for controlling SpeckNets and suggest that an existing mathematical model of a fungal colony can developed into a new computational paradigm

    Increasing β-catenin/Wnt3A activity levels drive mechanical strain-induced cell cycle progression through mitosis.

    Get PDF
    Mechanical force and Wnt signaling activate β-catenin-mediated transcription to promote proliferation and tissue expansion. However, it is unknown whether mechanical force and Wnt signaling act independently or synergize to activate β-catenin signaling and cell division. We show that mechanical strain induced Src-dependent phosphorylation of Y654 β-catenin and increased β-catenin-mediated transcription in mammalian MDCK epithelial cells. Under these conditions, cells accumulated in S/G2 (independent of DNA damage) but did not divide. Activating β-catenin through Casein Kinase I inhibition or Wnt3A addition increased β-catenin-mediated transcription and strain-induced accumulation of cells in S/G2. Significantly, only the combination of mechanical strain and Wnt/β-catenin activation triggered cells in S/G2 to divide. These results indicate that strain-induced Src phosphorylation of β-catenin and Wnt-dependent β-catenin stabilization synergize to increase β-catenin-mediated transcription to levels required for mitosis. Thus, local Wnt signaling may fine-tune the effects of global mechanical strain to restrict cell divisions during tissue development and homeostasis

    Retrieval of hundreds of nuclear loci from herbarium specimens

    Get PDF

    Spatial distribution of cell-cell and cell-ECM adhesions regulates force balance while main-taining E-cadherin molecular tension in cell pairs.

    Get PDF
    Mechanical linkage between cell-cell and cell-extracellular matrix (ECM) adhesions regulates cell shape changes during embryonic development and tissue homoeostasis. We examined how the force balance between cell-cell and cell-ECM adhesions changes with cell spread area and aspect ratio in pairs of MDCK cells. We used ECM micropatterning to drive different cytoskeleton strain energy states and cell-generated traction forces and used a Förster resonance energy transfer tension biosensor to ask whether changes in forces across cell-cell junctions correlated with E-cadherin molecular tension. We found that continuous peripheral ECM adhesions resulted in increased cell-cell and cell-ECM forces with increasing spread area. In contrast, confining ECM adhesions to the distal ends of cell-cell pairs resulted in shorter junction lengths and constant cell-cell forces. Of interest, each cell within a cell pair generated higher strain energies than isolated single cells of the same spread area. Surprisingly, E-cadherin molecular tension remained constant regardless of changes in cell-cell forces and was evenly distributed along cell-cell junctions independent of cell spread area and total traction forces. Taken together, our results showed that cell pairs maintained constant E-cadherin molecular tension and regulated total forces relative to cell spread area and shape but independently of total focal adhesion area

    The Algorithm Theoretical Basis Document for the GLAS Atmospheric Data Products

    Get PDF
    The purpose of this document is to present a detailed description of the algorithm theoretical basis for each of the GLAS data products. This will be the final version of this document. The algorithms were initially designed and written based on the authors prior experience with high altitude lidar data on systems such as the Cloud and Aerosol Lidar System (CALS) and the Cloud Physics Lidar (CPL), both of which fly on the NASA ER-2 high altitude aircraft. These lidar systems have been employed in many field experiments around the world and algorithms have been developed to analyze these data for a number of atmospheric parameters. CALS data have been analyzed for cloud top height, thin cloud optical depth, cirrus cloud emittance (Spinhirne and Hart, 1990) and boundary layer depth (Palm and Spinhirne, 1987, 1998). The successor to CALS, the CPL, has also been extensively deployed in field missions since 2000 including the validation of GLAS and CALIPSO. The CALS and early CPL data sets also served as the basis for the construction of simulated GLAS data sets which were then used to develop and test the GLAS analysis algorithms

    Mapping Structural Heterogeneity at the Nanoscale with Scanning Nano-structure Electron Microscopy (SNEM)

    Full text link
    Here we explore the use of scanning electron diffraction coupled with electron atomic pair distribution function analysis (ePDF) to understand the local order as a function of position in a complex multicomponent system, a hot rolled, Ni-encapsulated, Zr65_{65}Cu17.5_{17.5}Ni10_{10}Al7.5_{7.5} bulk metallic glass (BMG), with a spatial resolution of 3 nm. We show that it is possible to gain insight into the chemistry and chemical clustering/ordering tendency in different regions of the sample, including in the vicinity of nano-scale crystallites that are identified from virtual dark field images and in heavily deformed regions at the edge of the BMG. In addition to simpler analysis, unsupervised machine learning was used to extract partial PDFs from the material, modeled as a quasi-binary alloy, and map them in space. These maps allowed key insights not only into the local average composition, as validated by EELS, but also a unique insight into chemical short-range ordering tendencies in different regions of the sample during formation. The experiments are straightforward and rapid and, unlike spectroscopic measurements, don't require energy filters on the instrument. We spatially map different quantities of interest (QoI's), defined as scalars that can be computed directly from positions and widths of ePDF peaks or parameters refined from fits to the patterns. We developed a flexible and rapid data reduction and analysis software framework that allows experimenters to rapidly explore images of the sample on the basis of different QoI's. The power and flexibility of this approach are explored and described in detail. Because of the fact that we are getting spatially resolved images of the nanoscale structure obtained from ePDFs we call this approach scanning nano-structure electron microscopy (SNEM), and we believe that it will be powerful and useful extension of current 4D-STEM methods

    Comparative Conflict Resolution Procedures in Taxation: An Analytic Comparative Study

    Get PDF
    Tax administrators in well developed countries rarely have either occasion or opportunity to compare experiences or exchange opinions regarding procedures and practices utilized in administering complicated tax laws. Moreover, there is little comparative literature on the subject. Even the tax institutes which are internationally oriented usually focus on substantive tax principles, not procedures and practices. Hopefully, therefore, administrators in highly developed countries will find useful this analytic comparison of practices and procedures through which six of their number resolve disputable income tax questions -administratively and judicially. Concern for tax administrators in well developed countries, however, was not the prime motivation for this study. The initial conception grew out of the belief that administrators in countries just now developing would find especially useful an analytic comparison of diverse functioning models which had evolved out of long experience. Since these now developing countries differ from one another on many counts, it was imperative that there be equally wide dissimilarity among the several experienced countries selected as models. Thus, the choice of Belgium, France, West Germany, Great Britain, the Netherlands, and the United States. These countries differ in their size and population, the complexity and precision of their tax statutes, the degree their legislative bodies provide additional guidance through pre-enactment materials, the assessment system used (self- versus non-self-assessment systems), the standards of construction to which their courts traditionally conform, the theoretical status assigned by each to the doctrine of precedent, and the types of persons available to handle tax disputes-both within and without the government. Consequently, it was possible to determine whether such basic differences were relevant or irrelevant when choosing, from among the alternative functioning models, the structural arrangement and practices most appropriate for each level involved in the conflict resolution process. Also, the analytic comparison contained in the first four chapters should enable any given country to determine the extent to which diverse parts of different wholes are adaptable to its situation. The third purpose of this study is a byproduct of the first two. Practitioners engaged in international tax practice may gain a useful insight into the conflict resolution process followed in each of the six countries covered.https://repository.law.umich.edu/michigan_legal_studies/1005/thumbnail.jp
    corecore