96 research outputs found
A comparative evaluation of frictional resistance and surface roughness of silver coated and uncoated stainless-steel bracket wire assembly- An in-vitro study
Silver ions act as potent antimicrobial agents. Silver coating of brackets and the archwires can help reduce the formation of white spot lesions and caries which is commonly seen with fixed orthodontic treatment. However, this may affect the friction and surface roughness of the bracket-wire assembly which in turn affects the biological tooth movement. MATERIAL AND METHODS: A total of 60 samples were included in the study which was divided into four groups. Group-1: * 15 silver coated 0.022 x 0.028" slot MBT prescription maxillary central incisor brackets * 15 silver coated 0.019 x 0.025" stainless-steel wires; Group-2: * 15 uncoated 0.022 x 0.028" slot MBT prescription maxillary central incisor brackets * 15 silver coated 0.019 x 0.025" stainless-steel wires; Group-3: * 15 silver coated 0.022 x 0.028" slot MBT prescription maxillary central incisor brackets * 15 uncoated 0.019 x 0.025" stainless-steel wires; Group-4: * 15 uncoated 0.022x0.028" slot MBT prescription maxillary central incisor brackets * 15 uncoated 0.019 x 0.025" stainless-steel wires. All brackets and wires used were of American Orthodontics, St. Paul, USA. Surface modification of wires and brackets was carried out using the Vacuum Coating Unit model by Thermal Vacuum Evaporation method with silver nanoparticles (10 nm size). The frictional resistance of all brackets and wires was checked using Universal Testing Machine. RESULTS: On comparison of maximum load, it was found that friction was highest in group 3, followed by group 1, group 4 and group 2. The mean difference between all groups was found to be statistically significant with a P value Group 1> Group 2> Group 3 *Wire roughness: Group 4> Group 1> Group 2> Group 3. CONCLUSIONS: This study concluded that friction was least when only the wire was coated with silver and the bracket was uncoated and it was the most when the bracket was coated and the wire was uncoated. The surface roughness after the friction test was the least when the wire was uncoated. Key words:Silver nanoparticles, Frictional Resistance, Surface Roughness
Assessing the Performance of Models from the 2022 RSNA Cervical Spine Fracture Detection Competition at a Level I Trauma Center.
Purpose To evaluate the performance of the top models from the RSNA 2022 Cervical Spine Fracture Detection challenge on a clinical test dataset of both noncontrast and contrast-enhanced CT scans acquired at a level I trauma center. Materials and Methods Seven top-performing models in the RSNA 2022 Cervical Spine Fracture Detection challenge were retrospectively evaluated on a clinical test set of 1828 CT scans (from 1829 series: 130 positive for fracture, 1699 negative for fracture; 1308 noncontrast, 521 contrast enhanced) from 1779 patients (mean age, 55.8 years ± 22.1 [SD]; 1154 [64.9%] male patients). Scans were acquired without exclusion criteria over 1 year (January-December 2022) from the emergency department of a neurosurgical and level I trauma center. Model performance was assessed using area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. False-positive and false-negative cases were further analyzed by a neuroradiologist. Results Although all seven models showed decreased performance on the clinical test set compared with the challenge dataset, the models maintained high performances. On noncontrast CT scans, the models achieved a mean AUC of 0.89 (range: 0.79-0.92), sensitivity of 67.0% (range: 30.9%-80.0%), and specificity of 92.9% (range: 82.1%-99.0%). On contrast-enhanced CT scans, the models had a mean AUC of 0.88 (range: 0.76-0.94), sensitivity of 81.9% (range: 42.7%-100.0%), and specificity of 72.1% (range: 16.4%-92.8%). The models identified 10 fractures missed by radiologists. False-positive cases were more common in contrast-enhanced scans and observed in patients with degenerative changes on noncontrast scans, while false-negative cases were often associated with degenerative changes and osteopenia. Conclusion The winning models from the 2022 RSNA AI Challenge demonstrated a high performance for cervical spine fracture detection on a clinical test dataset, warranting further evaluation for their use as clinical support tools. Keywords: Feature Detection, Supervised Learning, Convolutional Neural Network (CNN), Genetic Algorithms, CT, Spine, Technology Assessment, Head/Neck Supplemental material is available for this article. © RSNA, 2024 See also commentary by Levi and Politi in this issue
Studies on pollen micro-morphology, pollen storage methods, and cross-compatibility among grape (Vitis spp.) genotypes
The knowledge of pollen morphology, suitable storage condition, and species compatibility is vital for a successful grapevine improvement programme. Ten grape genotypes from three different species, viz., Vitis vinifera L., Vitis parviflora Roxb., and Vitis champini Planc., were studied for their pollen structure and pollen storage with the objective of determining their utilization in grape rootstock improvement programs. Pollen morphology was examined through the use of a scanning electron microscope (SEM). The viability of the pollen was assessed using 2,3,5-triphenyltetrazolium chloride (TTC). In vitro pollen germination was investigated using the semi-solid medium with 10 % sucrose, 100 mg/L boric acid, and 300 mg/L calcium nitrate. The results revealed variations in pollen micro-morphology in 10 genotypes, with distinct pollen dimensions, shapes, and exine ornamentation. However, species-wise, no clear difference was found for these parameters. Pollen of V. parviflora Roxb. and Dogridge was acolporated and did not germinate. The remaining eight genotypes exhibited tricolporated pollen and showed satisfactory in vitro pollen germination. Storage temperature and duration interactions showed that, at room temperature, pollen of most of the grape genotypes can be stored for up to 1 day only with an acceptable pollen germination rate (>30 %). However, storage for up to 7 days was successfully achieved at 4 °C, except for ‘Pearl of Csaba’. The most effective storage conditions were found to be at −20 °C and −196 °C (in liquid N2), enabling pollen storage for a period of up to 30 days, and can be used for pollination to overcome the challenge of asynchronous flowering. Four interspecific combinations were studied for their compatibility, among which V. parviflora Roxb. × V. vinifera L. (Pusa Navrang) and V. parviflora Roxb. × V. champini Planc. (Salt Creek) showed high cross-compatibility, offering their potential use for grape rootstock breeding. However, V. parviflora Roxb. × V. vinifera L. (Male Hybrid) recorded the lowest compatibility index among studied crosses. In the case of self-pollinated flowers from V. parviflora Roxb. and V. parviflora Roxb. × V. champini Planc. (Dogridge), pollen failed to germinate on the stigma due to male sterility caused by acolporated pollen. As a result, the flowers of these genotypes functioned as females, which means they are ideal female parents for grape breeding without the need for the tedious process of emasculation
Analysis of Smile Perception in Laypersons and Orthodontists: A Cross Sectional Comparative Study
Green and chemical approach for synthesis of Ag2O nanoparticles and their antimicrobial activity
S2537 Successful Polypectomy With Novel Rigidizing Overtube With Failed Previous Colonoscopies
- …
