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Abstract 

This study demonstrates the feasibility of creating stable, pre-consolidated, yet permeable 

preforms for Liquid Resin Infusion (LRI) manufacture of composite materials. Whilst being one 

of the cheapest and simplest methods of composites manufacture, LRI with flexible tooling is 

known for high risk of dimensional and internal defects due to insufficient consolidation of 

textile preforms. Achieving the quality of a rigid mould solution, at the cost and simplicity of a 

flexible mould process, is the principal challenge of the LRI.  

The approach presented suggests stabilising a compliant preform through point-wise and highly-

controlled integration of a binder, and its consolidation prior to liquid moudling. The printed 

resin creates a stiff skeleton, securing material for resin infusion and curing. This study explores 

the feasibility and efficiency of novel binding techniques, and the effects it may have on 

preform properties. Successful implementation of the concept for a multi-ply woven preform is 

demonstrated and the concept potential is discussed.  
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Manuscript
Click here to download Manuscript: DimStabPreforms_Paper_AMPCS.docx 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

mailto:dmitry.ivanov@bristol.ac.uk
http://www.editorialmanager.com/ampcs/download.aspx?id=33007&guid=e8846c4e-c0e8-419a-bbc8-ffd95c524ce2&scheme=1


Stabilising textile preforms by means of liquid resin print: a feasibility study 

2 

 

  

1. Introduction 

Textile composites are increasingly used for quality-critical applications. Interest in these 

materials is primarily driven by the cost of manufacturing. Liquid Resin Infusion (LRI) with 

flexible tooling can be significantly cheaper than conventional autoclave manufacturing, 

however, there are a number of barriers to their expansion at the present time. One of the 

fundamental problems of LRI is the dimensional stability of complex components. Concave 

corners and junctions tend to be smoothed out, thickness distribution is inhomogeneous in 

convex corners, component edges drift away from the designed path, and large resin rich zones 

are formed in under-consolidated zones. In addition, thickness variation can lead to non-uniform 

resin flow during infusion, and as a result, to impregnation defects such as pores and dry 

regions. The primary reason for these peculiarities is insufficient tooling constraints.  

During LRI processes the consolidation and impregnation stages are coupled. Deformation and 

movement of a highly compliant textile laminate are typically only restrained by a flexible bag, 

which pressurises the preform when vacuum (that is used to assist resin flow) is applied. 

Atmospheric pressure alone is not sufficient to hold the preform in a fixed position and provide 

the intended homogeneous thickness distribution across the component. Moreover, resin flow 

and/or any subtle disturbance of the preform while bagging and handling, results in uncontrolled 

preform movement that may well lead to a dimensional defect. 

In current manufacturing practices the generally accepted solution to the dimensional problem is 

to use rigid moulds to restrain the preform from all sides. This can be an expensive solution 

which compromises the potential low cost advantages given by LRI. For example, draping 

deformations may significantly change local compressibility, and would require redesign of 

costly tooling [1]. Differences in compressibility may also be observed for preforms of the same 

nominal areal density but different architecture, such as a woven multi-ply and a 3D braided 

fabrics [2]. Hence a rigid mould Resin Transfer Moulding (RTM) process, where a tool 
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geometry is optimised for one preform, may be completely invalid for a preform of the same 

density but different pattern/structure.  

This work explores an alternative to the rigid tooling solution, by creating a stiff and stable 

preform that is consolidated prior to bagging. If it was possible to fix compaction deformations, 

then the textile could be shaped locally at critical areas (edges, corners, junctions) using a high 

pressure compaction tooling. The pre-configured preform could then be impregnated using 

flexible bagging, but without the risk of disturbing the preform tow architecture and component 

geometry. The main research question is how to effectively lock the consolidation deformations 

and modify preforms to: 

(1) Make preforms handleable by binding plies in multi-ply stack, preventing the 

disintegration of a compliant fabric and loss of scattered/loose yarns/filaments in complex net-

shaped systems; 

(2) Control a preforms thickness and fibre volume fraction and reach the compaction levels 

typical for an autoclave moulding. 

The main conceptual challenge of stabilising a preform and freezing-in the consolidation 

deformations is the delivery and distribution of a binding system into the preform. In order to 

achieve the stated goals, the binder has to be continuously integrated through the thickness of 

the dry reinforcement to prevent elastic spring-back upon unloading, and keep the fibres in their 

required positions.  

There is a range of commercially available stabilising systems in the form of powder 

binders/tackifiers [3, 4, 5, 6], veils [7, 8, 9], or matrix solvable through-thickness reinforcements 

[10]. Thermosetting or thermoplastic resin particles/fibres are spread over the fabric surface, and 

a preform is consolidated under pressure and heat. This operation does enhance the stability of 

the reinforcement, and can also reduce elastic spring-back deformations after pressure is 

released. To maintain the consolidation deformation, the solid particles of binder need to be 

dissolved and flow into the bulk reinforcement. At a relatively high fraction of epoxy binder the 
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spring back can be limited to 5-15% [4]. However, alongside the improvement in stability, the 

intra-yarn flow is significantly impeded by the shapeless clusters of resin, causing poor 

wettability and intra-yarn porosity [5]. This discrete binder approach is not well suited to deliver 

binder into the inner layers of 3D reinforcements. Recently, Thoma et al [11] suggested the idea 

of chemical-stitching, where resin is deposited into the preform discretely in a regular pattern. 

Stitching and tufting are other known routes to stabilise preforms. Solvable or structural yarns 

are inserted through the thickness to bind the plies mechanically. The through-thickness 

reinforcement cannot, however, be used to control the thickness of binded preforms. Moreover 

it distorts the fibres in plane, and creates fibre free spacing causing the occurrence of resin rich 

zones, and eventually, the deterioration of in-plane composite properties.  

As an alternative to the existing methods of stabilising reinforcements, this work tests the 

feasibility of creating a stiff skeleton with a well-defined geometry in a dry preform. This 

skeleton would constrain preform movements, simplifying handling of the preform and 

dictating component thickness. The explored form of binding is a pattern of pins of solidified 

resin introduced without disruption to the reinforcement geometry – Figure 1. These pins must 

span through the entire thickness covering inter and intra yarn space, be sufficiently stiff to 

resist the preform spring-back after consolidation, be local to minimise the disruption of resin 

flow during infusion, be defect/pore free, and be compatible with a resin used in infusion.  

The resin pinning is not considered to be a substitution of conventional binding or stitching 

processes but aims at point-wise stabilisation of textile preforms in the locations where 

thickness tolerances are low or risks of defect occurrence are high. Ideally this technique should 

be compatible with any other binding procedure. Unlike powder binding technique used for 

overall shape control, the primary role of resin pinning is to enhance (structurally and 

dimensionally) critical areas – edges, junctions, high curvature radii, corners, etc, or to create a 

solid carcass restraining the preform movements.   
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The introduction of these pins is the main process in question for the paper. The resin has to be 

delivered in a liquid state, however, it cannot simply be poured onto a fabric surface. Due to 

capillary forces within yarns and open spaces in-between plies, a liquid tends to spread over in 

the surface plies and does not penetrate a stack deep enough unless an excessive volume of resin 

is applied. The presented concept is to apply the resin through precise point-wise injections 

building up pins additively through the thickness of the reinforcement. Once preform is 

uniformly saturated with liquid binder in a required location the pin is cured assisted by heat 

and pressure.  

The paper addresses the questions of resin delivery, pin size/shape control, and the distribution 

of consolidating material. Thus, the major aims include: 

(1) To explore feasibility of liquid resin printing – a novel rig implementing the precise and 

programmed introduction of the resin is presented. The feasibility of high precision injections 

with fluid of various viscosities and constraints are discussed along with the features of 

consolidated material; 

(2) To demonstrate the opportunity of stabilising multi-ply preforms and by doing that to 

attempt increasing the quality of liquid moulded components produced by a simpler and cheaper 

manufacturing technique;  

(3) To study the impact of resin pinning on the LRI. The feasibility of resin infusion and the 

challenges associated with impregnating pre-consolidated preforms are discussed. 

2. Experimental set-up 

2.1 Liquid resin printer 

In order to implement the concept of resin pinning, an automated injection rig was designed and 

built through modification to an existing 3D printing system, the RepRap Mendel. As an open 

source venture, the RepRap hardware and firmware provided flexibility in altering the machine 

for this purpose. The most substantial of these modifications was the replacement of the 

standard RepRap thermoplastic extrusion head with a simple syringe pump arrangement 
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(accommodating 10ml Luer Lock BD Plastipak syringes) – Figure 2. The injection rig has three 

degrees of freedom (parallel translation in x,y,z directions) and independent control over the 

injection volumes. The set-up is automated and allows for the application of various injection 

patterns both in-plane and through-thickness of a preform. The Mendel’s accuracy in Cartesian 

movements is 0.1mm and trials demonstrated the syringe pump to be accurate to 1µl (as 

measured by weight in a 1000µl dose). To promote through-thickness flow and control the pin 

dimensions better, preforms needed to be constrained. 10 mm thick preform holders were 

manufactured from Perspex and bolted to the base plate of the injection rig. The syringe needle 

is inserted through holes in the constraining plates. In this study, needles with a diameter of 

260 µm was used. 

2.2 Materials 

Balanced multi-ply preforms, based on HS carbon fibre 5-harness satin (Hexcel G0803/G0963) 

with an areal density of 285 g/m
2 
per ply, was used. The fabric was woven of 3K yarns (linear 

density 203 tex), and had a yarn spacing of 1.38 mm (ends/picks count of 7.2 yarn/cm).  

Conventional resin systems designed for LRI were used both for pinning and infusion. Interest 

in a standard LRI resin was due to its known flow, curing, and binding characteristics. A pin 

made of such a resin would be chemically identical to the rest of the composite, minimising the 

disruption and stiffness contrast caused by its presence in the composite. In principle, any 

injectable resin system can be used for pinning. Moreover, this procedure could be used to 

enhance properties or functionalize the composite at the same time. 

Prime 20LV low-viscosity low-exotherm transparent epoxy was used as a benchmark liquid 

resin as it was specifically designed for LRI, including the flexible tooling process. The resin 

can be cured at range of temperatures and curing times. The variant used in this study was the 

extra slow hardener, cured for 6 hours at 65C according to the manufacturer’s specification.  
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3. Liquid resin print 

3.1 Feasibility of high precision injections 

Injection experiments were conducted on a 16-ply 5HS preform housed in the Perspex rig 

containing a 90 x 90 x 10mm cavity to accommodate the preform stack and a 9x9 injection hole 

array (10 mm spacing). Perspex as the choice of tooling material (with Nylon screws) provided 

both visual transparency and radiolucency to allow for observation of the resin flow using X-

Ray tomography (CT-Scan). Preforms were wrapped in an envelope of PTFE release film. The 

frame held the plies together during injection and examination, but did not impose significant 

compaction pressure – the average fibre volume fraction was 26.4% (corresponding to an 

average ply thickness of 0.65 mm).  

To visualise the flow of injected resin and study the fluid distribution, dye penetrant fluids were 

chosen. Zinc dioxide (ZnO2) powder with particle size not exceeding 5 µm, which can be 

detected by X-Rays, was dispersed in two carriers of propanol (viscosity 2 cP) and 

Prime 20LV epoxy (600 cP). Propanol does not represent any commercial resin but was used 

to demonstrate the extreme example of flow and fluid distributions if lower viscosity systems 

are to be used. The injections were applied at various depths and volumes - Figure 3a. At each 

in-plane location of needle insertion there was either a single injection or several injections at 

different depths. The following programme, as shown on Figure 3b, was implemented: (I) three 

injections per thickness in a column with various injection volumes; (II) single injections of 

different volumes at the same depth; (III) single injections of the same volume at different 

depths. Fluids were injected at the rate of 8 ml/min.  

The experiments demonstrated the ability of the set-up to deliver a required binder volume to 

any location in a textile preform. It also revealed important flow features:  

(a) The injected fluid remained in the local vicinity of the injection site and tended to 

spread in-plane of the preform rather than through thickness; 
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(b) Zn particle position was confined to within a few plies around the needle tip. As the 

volume of injections increased it led to a further spreading of the liquid in the plane of fabric; 

(c) The thickness of the impregnated layer was comparable to the size of the needles taper 

of 3mm. 

The flow patterns of the considered fluids, revealed by X-Ray examination, appeared to be 

pronouncedly different. Epoxy clusters were more local, with their maximum in-plane size 

almost linearly proportional to the quantity of injected material. It evolved from 4 to 8 mm with 

the injection volume increasing from 8 to 16 µl – Figure 3c. In the case of the low viscosity 

fluid the maximum linear dimensions of the clusters exceeded 15 mm even for the smallest 

injected quantity – Figure 3b. The increase in the injection volume resulted in the thickness 

growth of the zinc cluster from 2.6 to 3.4 mm for the propanol solution and from 1.7 to 

2.0/2.5 mm for the epoxy. Hence, the preform volume affected by the fluid appears to be 

smaller, both in-plane and through-thickness, for the fluid with higher viscosity.  

The wetted area can be estimated for two flow scenarios: (a) the entire volume of fluid is held 

within the yarns and (b) the fluid propagates uniformly in the inter- and intra-yarn space. The 

required inter-yarn porosity (20.0%) and the intra-yarn fibre volume fraction (33.1%) for these 

estimates were obtained based on the known average ply thickness and weave density. If the 

fluid is spread uniformly throughout the volume, then for the given geometry, the diameter of a 

circle area affected by 8 µl injection is estimated to be 4.6 mm if two plies are impregnated or 

5.3 mm if resin spreads over three plies. If the resin is pulled into the yarns and the intra-yarn 

space remains unaffected, the dimensions should increase to 9.3 mm for two plies and 11.5 mm 

for three plies. Comparison of the obtained values with the cluster dimensions seen in the 

experiments implied that the major fraction of the viscous resin was accumulated in the inter-

ply and intra-yarn spaces; whereas capillary forces dragged the entire volume of a thin fluid into 

the yarns and possibly not even fully impregnating them in the affected area. This suggests that 
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resins systems with a very low viscosity may not be appropriate for the purposes of resin 

pinning. The absence of resin in inter-yarn spaces leads to the occurrence of porous pins. 

These trials are in agreement with the analysis of traditional non-vacuum assisted RTM. As 

shown for various architectures [12, 13, 14], there exists an optimum balance of injection speed, 

resin viscosity, resin surface tension, and fibre-matrix contact angle at which the flow 

propagates uniformly in the inter- and intra-yarn space. Patel et al [12] introduced a modified 

Capillary number, which condenses all of these characteristics into one dimensionless 

parameter, and dictates the void volume fraction. The experiments with propanol solution 

confirmed that capillary forces dominate when the resin viscosity is too low.  

The CT scans demonstrated that in contrast to conventional stitching, fabric disruption caused 

by needle insertion was negligible compared to the characteristic features of the weave. The 

needle did leave a visible trace (100-300 µm in diameter), however, aside from the point of 

piercing the structure seemingly remains unaffected. 

3.2 Feasibility of consolidation 

Consolidation tests with a reactive resin were conducted using different injection volumes 

(ranging from 8 to 40 µl per injection) and patterns. The settings for the injections were kept 

similar to the injection trials described previously except that the number of plies was increased 

to 24 to reduce or close the channels for intra-yarn flow. The fibre volume fraction during 

injection was thus raised to 40%. The number of injection steps in a column was also increased 

to a minimum 7 per thickness of preform, in order to have at least one injection per three plies. 

After injection, preforms were consolidated in a hot press at pressures exceeding 0.6 MPa and 

temperatures corresponding to the cure program of the utilised epoxy.  

Pins were found to have a well-defined geometries on the textile surface, spanned through 

thickness, and the consolidation deformations held in the fabric approached 65% fibre volume 

fraction at the pin centre (estimated based on the known areal density of fabric, density of 

carbon fibres, and preform thickness). The non-impregnated areas of the preform sprung back 
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elastically after consolidation, which created a substantial thickness variation of 10% between 

the pinned and dry area, Figure 4. The thickness of the dry areas between pins aligned with the 

fibre direction found to be substantially smaller compared to the pins placed at 45 to the fibre 

direction. It is suggested that the yarns bridging the pins retained the dry area in between them, 

resisting elastic thickness recovery on unloading.  

CT scan shows pins to be barrel in shape, being wider in the bulk of the preform. The preform 

was impregnated uniformly throughout the thickness except for the bottom ply. This was due to 

significant tapering (3 mm long) of the needle, meaning it could not be inserted as deep as 

required to fully impregnate the bottom plies. In subsequent process optimisation trials it was 

shown that this issue can be corrected by increasing the volume of the injection in the bottom 

ply. 

The surface analysis of the pinned preforms showed a noticeable widening of yarns at the 

consolidated regions compared to the dry areas – Figure 5. It was estimated that the average 

yarn width increased by 20-25%. In the pins, yarns clearly exceeded the yarn spacing of 

1.4 mm, which led to the yarn jamming and the overlap effect known for other woven fabrics 

[1]. This feature has a significant impact on fabric compressibility and through-thickness 

permeability. 

Various patterns and injection volumes were implemented for demonstration purposes and 

Figure 6 shows examples of pinned preforms consolidated in different ways. It can be seen that 

overall a good control of pin position and dimensions is achieved. Depending on the 

manufacturing requirements, pin density and size can either be minimised to enhance resin flow 

during the infusion, or maximised to reduce thickness variation, and improve preform stability.  

Figure 6b shows an example of a pinned [0, 45]s stack. Waviness in this preform was 

significantly reduced compared to the 0 stacked samples. The minor thickness variation 

between bridged pins was owed due to fibre crimp. Yarn crimp (1.4% for the 5HS fabric) 

allowed for a certain thickness recovery at the expense of straightening fibres. Hence spring 
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back effects can be minimised, or fully eliminated, by creating quasi-isotropic laminates or 

bridging the pins on the surface by layers of non-crimp fabric. 

Samples for LRI trials were produced as 30090 mm preforms with different lay-ups and pin 

patterns tailored for the need of LRI (discussed below) – Figure 7. Consolidation was deemed 

satisfactory – uniform cured pins of approximately 10 mm in diameter were clearly separated by 

dry channels, leaving space for the resin flow during infusion.  

4. Liquid moulding of pre-consolidated preforms  

Infusion trials were primarily targeted at establishing whether the pinning process used and 

increase in fibre volume fraction lead to the occurrence of any significant defects. The major 

concerns were: 

(a) Consolidation inevitably leads to a significant drop in preform permeability. The 

Kozeny-Carman model predicts a reduction of in-plane permeability by a factor of 9 as the 

fibre volume fraction grows from 50 to 70%. The impact of consolidation on through-thickness 

permeability can be even stronger, and reach two orders of magnitude for the same range of 

fibre volume fractions [15, 16, 17, 18]. The decrease in permeability impacts on infusion time 

and elevates risks of poor impregnation. Some variants of LRI are specifically designed to 

increase permeability by either releasing the pressure imposed by the bagging film, as suggested 

in Vacuum Induced Preform Relaxation (VIPR) [19], or by modifying preforms, as suggested 

by Pearce et al [20]. However, pre-consolidation makes it impossible to follow these routes. 

(b) Compaction affects the ratio of in-plane to out-of plane permeability. This increases the 

risk of forming surface defects due to preferential flow in the plane of the preform. As was 

shown in Figure 5, yarn cross-overs in the pins are densely packed, leaving no free channels for 

through-thickness flow. In this state the preform permeability will not exceed the low transverse 

permeability of unidirectional fibre bundles. Hence upon compaction through-thickness 

permeability is decreased faster than the in-plane. Many LRI methods rely on through-thickness 

flow, as implemented in Seemann’s (SCRIMP) process by means of a highly permeable 
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distribution media [21], channels engraved in a constraining rigid plate [22] or in the core of 

sandwich panels [23]. It is thus important to check the feasibility of flow through the preform 

thickness; 

(c) Stiff pins present obstacles for in-plane flow, which may lead to the possible formation 

of dry areas in close proximity to them; 

Along with these negative factors, an optimised design of the pin pattern can be used to address 

the issues of permeability and flow control. For example, the diagonal pin pattern in Figure 7a is 

oriented at 45 to the warp direction, which may help to address the issue of increased ratio of 

in-plane to through-thickness permeability. The resultant inter-pin channels (8 mm wide) were 

oriented at an angle to the fibre direction. Since the permeability in the bias direction is lower 

compared to the fibre direction, this pin arrangement allowed slowing of the in-plane resin flow 

without further affecting the inter-ply impregnation. Figure7b presents an even more radical 

solution, where in-plane flow along the panel axis was fully blocked. Pin dams divided the 

panel into isolated segments, forcing the resin to flow in only one direction – through thickness 

– thus eliminating the issue with the resin flow front formation. 

End-to-end infusion experiments along the preform length were conducted using a variation of 

the conventional LRI scheme. It utilised a single vacuum bag with a resin distribution mesh 

placed at the preform surfaces. Six layers of low density knitted polyester mesh at the bottom 

surface and two layers at the top surface, separated from the preform by peel ply (Tygavac 

polyester peel ply with areal density of 95 g/m²), were used. This mesh was applied to promote 

the accumulation of the resin at the surface, and to assist out-of plane impregnation concurrently 

to the in-plane flow – Figure 8. The process was divided into two stages:  

(1) Under application of a low vacuum (60 kPa) the resin was driven into the thick permeable 

mesh placed underneath the preform to the vacuum port 1 (used as a sensor of mesh filling);  

(2) As soon as the resin impregnated the bottom mesh, port 1 was closed, the vacuum level was 

increased to maximum, and port two above the composite surface was opened. 
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In general, the infusion runs were realised in accordance to the designed scheme. The first stage 

took 50 minutes for the resin to impregnate the mesh under the given conditions. Upon applying 

the full vacuum, it took another 30 minutes for the resin to cover the mesh/breather on top of the 

preform and to reach port 2. The major fraction of time was taken by filling of the thick resin 

distribution mesh. Mesh filling was independent of the preform consolidation and in one form 

or another is realised in all infusion processes. Optimising the mesh or utilising Fast Remotely 

Actuated Channels (FASTRAC) processes [24, 25], Floor Flooding Chamber (FFC) method 

[26], or SCRIMP processes [21] may improve this aspect of the infusion process used.  

Resin infusion optimisation goes beyond the scope of the current paper, however, to 

demonstrate the potential scope for processing pre-consolidated panels, alternative infusion tests 

were conducted. In those tests the bottom distribution mesh was substituted with a foam block 

(Syrofoam HD300) containing carved-in channels (10 mm in depth and width) of one central 

channel along the panel length and 7 equally spaced channels along the width. This 

modification decreased the total filling time by a factor of 10. The pins were demonstrated to 

have played a particular role in this trial as they held the preform shape, and did not allow it to 

sink into the channel spaces as would happen to a conventional preform. Thus, paradoxically, 

pre-consolidation worked in favour of the infusion time by allowing larger channels and faster 

resin delivery. 

A CT scan of the pinned and infused preform, Figure 10, demonstrates several important 

aspects of both the pre-consolidation and the infusion procedures: 

(1) Thickness variation seen in the dry panel was largely preserved after infusion reaching 

20% difference between the infused and pinned areas. This clearly demonstrates the difference 

between high consolidation (rigid mould RTM or autoclave) and flexible bagging processes.  

(2) There was no impregnation defects formed around the pins, which suggests that in the 

presence of through-thickness flow the solid pins by themselves did not present a major obstacle 
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for impregnation. No clear boundary of any sort could be detected at the interface between the 

injected and the infused volumes, and pins were uniformly enveloped by the infused resin. 

5. Discussion 

5.1 Pin quality 

The internal impregnation quality of pins depends on a balance of multiple parameters. The 

classical theory of RTM processes relates injection speed, and the properties of the resin and the 

resin-fibre interface, to the porosity volume fraction and the pore size [12-14]. In the resin 

printing process there is a significant number of other parameters which may have a direct 

impact on impregnation quality. This includes fabric constraints (fibre volume fraction at 

injection), injection volume, needle tapering size, needle diameter, the number of injections 

through-thickness, the time to maintain the needle in place after the injection (allowing inertial 

flow of the viscous resin), etc. Proper optimisation of the injection program requires a 

sophisticated analysis of the flow at the micro level in the vicinity of a tapered needle. Such a 

study goes beyond the scope of the current paper and requires further investigation. For the 

purposes of the current study – aimed at the feasibility of pre-consolidation – it was deemed 

sufficient to set the injection to minimise the inter yarn porosity (in the scale of millimetres) and 

accept the presence of intra-yarn micro-porosity (characteristic pore size of 10 µm), which is 

less critical for key material properties such as inter-laminar strength and fracture toughness. 

Based on optical analysis (volume fraction of black pixels on a black and white representation 

of the cross-section image) the level of porosity within the pins was estimated to be below 

2.5%.  

A typical morphology of a first pre-consolidated and then infused sample is shown in Figure 10. 

Although no clear boundary between the injected and infused resin is seen, the area of injection 

could be recognised by pronounced micro-porosity which allows identifying the approximate 

boundaries of the pins. Even though the injections were spaced at equal distances (7 injections 

through thickness), the injected area formed a non-uniform cone with the boundaries not 
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coinciding with the volume of high compaction. A characteristic difference in yarn crimp is also 

seen for the yarns of different plies: the through-thickness span of yarn walk differs by 60% for 

the yarns at opposite surfaces. This reflects the thickness variation due to the elastic spring back 

of the preform after consolidation.  

Thus the process of pre-consolidation creates an additional length scale, revealed in the 

variation of thickness and fibre volume fraction, regular interfaces between infused and injected 

resin, additional period of yarn waviness, and the non-uniformity of the ply geometry through 

thickness. The role of these features in mechanical behaviour, and damage accumulation 

mechanisms in particular, is yet to be understood. However, it is already clear that the added 

length scale increases the palette of available manufacturing parameters that can modify the 

material performance and tailor it to specific design needs.  

5.2 Preform quality 

The most promising aspect of resin pinning is the ability to control composite dimensions in 

critical locations (e.g. corners, junctions, fittings) where the thickness may have an impact on 

structural performance, where tolerance on dimensions is low, or where insufficient 

consolidation may lead to impregnation defects. For example, Hubert and Poursartip [27] have 

demonstrated that depending on the bagging conditions (presence or absence of a bleeder) 

laminates consolidated over a corner exhibit different flow and deformation mechanisms, which 

leads to dramatic difference in thicknesses and defect modes. Local stiffening of assembled or 

net-shape preforms guarantees that the preform remains stable in the course of infusion, 

debulking, and curing. This is also attractive for dry non-binded net-shaped preforms, where 

handling operations impact on its compressibility. The stability of preform can considerably 

simplify the manufacturing arrangements and so mitigate the probability of defect occurrence.  

In less critical areas, a controlled thickness variation may be deemed acceptable, and even yield 

benefits in structural performance. Pinning of orthogonal woven preforms creates thickness 

variation if the pins are consolidated to a minimum achievable thickness that cannot be readily 
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reached using conventional flexible bagging processes. In this case local point-wise 

consolidation leads to a characteristic wavy surface of the preform and the resultant composite. 

If considered undesirable, this feature can be tackled or eliminated by adjusting the pin pattern 

and bridging the pins with non-crimp yarns.  

Pre-consolidation used in pinning can increase the density of the preforms significantly, 

lowering permeability, but the infusion experiments showed that the preforms still remained 

infusable. Moreover, pinning provides a perspective method for controlling flow in the infusion 

process. It was shown that the pin pattern can direct the flow in a required (e.g. through-

thickness or bias) direction, which may improve the reliability in a liquid moulding. In addition, 

the stiffness of skeletonised preforms allows for a greater flexibility in perfecting the 

manufacturing process. For instance, the resin delivery can be optimised by introducing resin 

channels without impacting on internal geometry of the material. 

5.3 Processing perspectives 

In its current form the pinning method considerably increases processing time as the material 

undergoes two curing procedures: once for resin pinning and the other time for the bulk of the 

matrix. These operations however can be optimised if, for example, fast curing thermoset resins 

or low-viscosity thermoplastic systems are used as the pin material. Fast solidification of pins 

would also imply that no heavy consolidation equipment is needed. Pins could be consolidated 

one by one applying low force but generating high pressure (for instance, a 10 kg force would 

only be required to generate excessive pressure on the 10 mm diameter pin). In this study, as it 

targeted the proof of concept only, the resin pins were consolidated all at once using a small hot 

press. However in industrial practice a compact tooling may be used for this purpose. 

6. Conclusions 

A novel binding concept was investigated and proven feasible. In contrast to conventional 

binding concepts, the novel method was implemented through the 3D printing of liquid resin 
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into dry reinforcements. The proof of concept was presented for one preform type, however the 

developed approach is applicable to other textile reinforcement including 3D braided preforms. 

The rig developed for this work demonstrates the potential of the concept. It allows for the 

precise delivery of a liquid resin into a bulk textile preform through local, point-wise, and 

highly controlled injections with a pattern that can be tailored to the requirements of infusion, 

draping, or tuning of composite properties. A procedure for integrating binder through thickness 

and creating pins was developed and implemented, and it was shown that pins, ribs, and other 

forms of a stiff skeleton in a dry reinforcement can be printed in compliance with manufacturing 

needs. 

The next stage of development in resin pinning involves perfecting the pins quality. Due to the 

dual scale of fibre free space in preforms, the contrast of longitudinal and transverse yarn 

permeabilites, and the action of intra-yarn capillary forces, the non-uniform unsaturated flow 

leads to pore entrapment. The current injection procedure was set to minimise the intra-yarn 

porosity, with the characteristic size exceeding one millimetre. Micro-porosity remained an 

issue and needs to be tackled by multi-parametric optimisation procedures, which considers the 

physical properties of resins and interfaces, the internal geometry of a preform, and the setting 

of the injection printer. The advantage of the liquid printer is that it allows for exquisite control 

of all the injection parameters. In particular, injection speed and hence the gradient of resin 

pressure around the needle, can be set and adjusted to tune the pinning procedure for a particular 

preform. 

Is has been demonstrated that a new paradigm to additive manufacturing can be applied in the 

context of liquid moulding and textile composite processing. The approach promises new 

possibilities in controlling a preforms internal architecture, and component dimensions in 

critical locations. Skeletonising textile preforms found to be effective for defect mitigation and 

processing control. Though many issues are still to be addressed, the process suggests a new 
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avenue to approach high quality rigid mould solutions for simplicity and cost of flexible 

moulding processes. 
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Figure 1. Sketch illustrating the idea of resin pining: solid cured pins spanning through the thickness of dry multi-

ply preform 

 

a)   

(b) (c)  

Figure 2 (a) Modified rapid prototyping RepRap rig, (b) schematic of printing unit on the rig with the preform 

constraining rig mounted on the bed rig, (c) needle injecting resin through the holes into the perforated preform 

holder.  
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a) b)  

c)  d)  

Figure 3. CT-Scan of Zn solutions injected into a woven carbon fabric (a) general view of traces left by propanol 

solution (seen as dark area), (b) the summary of depths at which injections are made (d3 = 5.5 mm, d2 = 2.9 mm, 

d1 = 1.4 mm, d0 = 0.1 mm), (c) Zn traces of propanol based solution (seen as white on dark preform) and 

(d) Tracers of epoxy based solution. The locations of injections are shown by circles (red – 8µl, yellow – 12µl, 

green – 14µl, blue – 16 µl).  

 

a) b)  

Figure 4. CT-scans of consolidated preform with 40 µl volume per injection: a) cured zones and b) cross-section 

between the cured zones showing the thickness variation 

 
  



 

 

 

Figure 5. In-plane geometry of consolidated fabric. The characteristic yarn width is marked with solid yellow lines 

in the consolidated region (all arrows are 1.9 mm) and by green dot lines in the dry area (all arrows are 1.5 mm). 

 

 

a) b) c)  

Figure 6. Consolidated 24-ply woven preforms (a) 0 laminate, seven 40 µl injections per pin, 20 mm spacing; (b) 

0 laminate, ten 10 µl injections per pin, 28.3 mm spacing; (c) (0/45)s, eleven 10 µl injections per pin, 28.3 mm 
spacing.  

 

 

 

(a)  (b)  

Figure 7. Examples of pre-consolidated panels (30090 mm) of 24 ply 5HS preforms: (a) diagonal pattern, each pin 

is made by seven 20l injection through the preform thickness, (b) rib pattern, each pin is made by ten 10l 
injection through the preform thickness. 



 

Figure 8. Two-stage infusion where stiff ribs across the panel cut the in-plane flow off and promote through-

thickness flow only. 

 

 

 

 

Figure 9. X-Ray tomography of the infused pre-consolidated panel (seven 20 µl injections per thickness, 10 mm pin 

diameter): surface texture (on the left: dark area indicate valleys, grey area - hills) and the section across the panel 

length (on the right). NB: white spots are the polyester trace yarns inserted in the carbon preform. 

 

 



 

Figure 10. Cross-section of the resin pinned and infused composite in the vicinity of injection (non-optimised 

injection parameters). The through-thickness spans of highlighted yarns at the upper surface and in the centre are 

60% and 35% higher than the one at the bottom. 


