25 research outputs found

    Dissipative dynamics of spins in quantum dots

    Full text link
    We present a theory for the dissipation of electronic spins trapped in quantum dots due to their coupling to the host lattice acoustic phonon modes. Based on the theory of dissipative two level systems for the spin dynamics, we derive a relation between the spin dissipative bath, the electron confinement, and the electron-phonon interaction. We find that there is an energy scale, typically smaller than the electronic lateral confinement energy, which sets the boundary between different dissipative regimes .Comment: 4 pages, 2 eps figure

    Bosonização em níveis de Landau

    Get PDF
    Orientador: Amir Ordacgi CaldeiraTese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb WataghinResumo: Neste trabalho propomos um novo método teórico de estudo dos sistemas eletrônicos correlacionados de baixa dimensionalidade, na presença de um campo magnético uniforme. Esta técnica trata da bosonização das excitações de baixa energia dos sistemas fermiônicos e foi inspirada em métodos anteriores de bosonização em uma ou duas dimensões sem campo magnético. No esquema proposto, a bosonização das excitações de baixa energia é elaborada a partir da descrição quântica natural da partículas carregadas na presença de um campo magnético uniforme, qual seja, a dos Níveis de Landau. No decorrer, mostraremos como este método pode ser aplicado a problemas recentes, em que as propriedades dos sistemas eletrônicos confinados em duas dimensões, obtidas experimentalmente, indicam a necessidade de novos métodos teóricos de investigaçãoAbstract: Not informed.DoutoradoFísicaDoutor em Ciência

    Fluctuation induced first-order phase transitions in a dipolar Ising ferromagnet slab

    Get PDF
    We investigate the competition between the dipolar and the exchange interaction in a ferromagnetic slab with finite thickness and finite width. From an analytical approximate expression for the Ginzburg-Landau effective Hamiltonian, it is shown that, within a self-consistent Hartree approach, a stable modulated configuration arises. We study the transition between the disordered phase and two kinds of modulated configurations, namely, striped and bubble phases. Such transitions are of the first-order kind and the striped phase is shown to have lower energy and a higher spinodal limit than the bubble one. It is also observed that striped configurations corresponding to different modulation directions have different energies. The most stable are the ones in which the modulation vanishes along the unlimited direction, which is a prime effect of the slab's geometry together with the competition between the two distinct types of interaction. An application of this model to the domain structure of MnAs thin films grown over GaAs substrates is discussed and general qualitative properties are outlined and predicted, like the number of domains and the mean value of the modulation as functions of temperature.Comment: 13 pages, 14 figure

    Correlated disorder in random block-copolymers

    Full text link
    We study the effect of a random Flory-Huggins parameter in a symmetric diblock copolymer melt which is expected to occur in a copolymer where one block is near its structural glass transition. In the clean limit the microphase segregation between the two blocks causes a weak, fluctuation induced first order transition to a lamellar state. Using a renormalization group approach combined with the replica trick to treat the quenched disorder, we show that beyond a critical disorder strength, that depends on the length of the polymer chain, the character of the transition is changed. The system becomes dominated by strong randomness and a glassy rather than an ordered lamellar state occurs. A renormalization of the effective disorder distribution leads to nonlocal disorder correlations that reflect strong compositional fluctuation on the scale of the radius of gyration of the polymer chains. The reason for this behavior is shown to be the chain length dependent role of critical fluctuations, which are less important for shorter chains and become increasingly more relevant as the polymer length increases and the clean first order transition becomes weaker.Comment: 11 pages, 5 figures, submitted to PR

    Low-aberration beamline optics for synchrotron infrared nanospectroscopy

    Get PDF
    MCTIC - MINISTÉRIO DA CIÊNCIA, TECNOLOGIA, INOVAÇÕES E COMUNICAÇÕESSynchrotron infrared nanospectroscopy is a recently developed technique that enables new possibilities in the broadband chemical analysis of materials in the nanoscale, far beyond the diffraction limit in this frequency domain. Synchrotron infrared ports have exploited mainly the high brightness advantage provided by electron storage rings across the whole infrared range. However, optical aberrations in the beam produced by the source depth of bending magnet emission at large angles prevent infrared nanospectroscopy to reach its maximum capability. In this work we present a low-aberration optical layout specially designed and constructed for a dedicated synchrotron infrared nanospectroscopy beamline. We report excellent agreement between simulated beam profiles (from standard wave propagation and raytracing optics simulations) with experimental measurements. We report an important improvement in the infrared nanospectroscopy experiment related to the improved beamline optics. Finally, we demonstrate the performance of the nanospectroscopy endstation by measuring a hyperspectral image of a polar material and we evaluate the setup sensitivity by measuring ultra-thin polymer films down to 6 nm thick.2691123811249MCTIC - MINISTÉRIO DA CIÊNCIA, TECNOLOGIA, INOVAÇÕES E COMUNICAÇÕESMCTIC - MINISTÉRIO DA CIÊNCIA, TECNOLOGIA, INOVAÇÕES E COMUNICAÇÕE

    High-resolution synchrotron-based X-ray microtomography as a tool to unveil the three-dimensional neuronal architecture of the brain

    Get PDF
    The assessment of neuronal number, spatial organization and connectivity is fundamental for a complete understanding of brain function. However, the evaluation of the three-dimensional (3D) brain cytoarchitecture at cellular resolution persists as a great challenge in the field of neuroscience. In this context, X-ray microtomography has shown to be a valuable non-destructive tool for imaging a broad range of samples, from dense materials to soft biological specimens, arisen as a new method for deciphering the cytoarchitecture and connectivity of the brain. In this work we present a method for imaging whole neurons in the brain, combining synchrotron-based X-ray microtomography with the Golgi-Cox mercury-based impregnation protocol. In contrast to optical 3D techniques, the approach shown here does neither require tissue slicing or clearing, and allows the investigation of several cells within a 3D region of the brain

    Dynamical Mean Field Theory for Self-Generated Quantum Glasses

    Full text link
    We present a many body approach for non-equilibrium behavior and self-generated glassiness in strongly correlated quantum systems. It combines the dynamical mean field theory of equilibrium systems with the replica theory for classical glasses without quenched disorder. We apply this approach to study a quantized version of the Brazovskii model and find a self-generated quantum glass that remains in a quantum mechanically mixed state as T -> 0. This quantum glass is formed by a large number of competing states spread over an energy region which is determined within our theory.Comment: 10 pages, 4 figure
    corecore