282 research outputs found

    Autonomous Light Management in Flexible Photoelectrochromic Films Integrating High Performance Silicon Solar Microcells

    Get PDF
    Commercial smart window technologies for dynamic light and heat management in building and automotive environments traditionally rely on electrochromic (EC) materials powered by an external source. This design complicates building-scale installation requirements and substantially increases costs for applications in retrofit construction. Self-powered photoelectrochromic (PEC) windows are an intuitive alternative wherein a photovoltaic (PV) material is used to power the electrochromic device, which modulates the transmission of the incident solar flux. The PV component in this application must be sufficiently transparent and produce enough power to efficiently modulate the EC device transmission. Here, we propose Si solar microcells (μ-cells) that are i) small enough to be visually transparent to the eye, and ii) thin enough to enable flexible PEC devices. Visual transparency is achieved when Si μ-cells are arranged in high pitch (i.e. low-integration density) form factors while maintaining the advantages of a single-crystalline PV material (i.e., long lifetime and high performance). Additionally, the thin dimensions of these Si μ-cells enable fabrication on flexible substrates to realize these flexible PEC devices. The current work demonstrates this concept using WO₃ as the EC material and V₂O₅ as the ion storage layer, where each component is fabricated via sol-gel methods that afford improved prospects for scalability and tunability in comparison to thermal evaporation methods. The EC devices display fast switching times, as low as 8 seconds, with a modulation in transmission as high as 33%. Integration with two Si μ-cells in series (affording a 1.12 V output) demonstrates an integrated PEC module design with switching times of less than 3 minutes, and a modulation in transmission of 32% with an unprecedented EC:PV areal ratio

    Non-enzymatic Electrochemical Determination of Glucose Concentration

    Get PDF
    There are a variety of applications for electrochemistry (including synthetic, physical and analytical chemistry), and here we present an experimental protocol for the non-enzymatic electrochemical quantitation of glucose in liquids that can be used in teaching laboratories. This offers an interesting experiential learning experience that is contextualized through a real world application where comparable technology the students employ touches the lives of humans across the world on a daily basis

    BTS clinical statement for the diagnosis and management of ocular tuberculosis

    Get PDF
    The BTS clinical statement for the diagnosis and management of ocular tuberculosis (TB) draws on the expertise of both TB and and ophthalmic specialists to outline the current understanding of disease pathogenesis, diagnosis and management in adults. Published literature lacks high-quality evidence to inform clinical practice and there is also a paucity of data from animal models to elucidate mechanisms of disease. However, in order to improve and standardise patient care, this statement provides consensus points with the currently available data and agreed best practice

    Autonomous Light Management in Flexible Photoelectrochromic Films Integrating High Performance Silicon Solar Microcells

    Get PDF
    Commercial smart window technologies for dynamic light and heat management in building and automotive environments traditionally rely on electrochromic (EC) materials powered by an external source. This design complicates building-scale installation requirements and substantially increases costs for applications in retrofit construction. Self-powered photoelectrochromic (PEC) windows are an intuitive alternative wherein a photovoltaic (PV) material is used to power the electrochromic device, which modulates the transmission of the incident solar flux. The PV component in this application must be sufficiently transparent and produce enough power to efficiently modulate the EC device transmission. Here, we propose Si solar microcells (μ-cells) that are i) small enough to be visually transparent to the eye, and ii) thin enough to enable flexible PEC devices. Visual transparency is achieved when Si μ-cells are arranged in high pitch (i.e. low-integration density) form factors while maintaining the advantages of a single-crystalline PV material (i.e., long lifetime and high performance). Additionally, the thin dimensions of these Si μ-cells enable fabrication on flexible substrates to realize these flexible PEC devices. The current work demonstrates this concept using WO₃ as the EC material and V₂O₅ as the ion storage layer, where each component is fabricated via sol-gel methods that afford improved prospects for scalability and tunability in comparison to thermal evaporation methods. The EC devices display fast switching times, as low as 8 seconds, with a modulation in transmission as high as 33%. Integration with two Si μ-cells in series (affording a 1.12 V output) demonstrates an integrated PEC module design with switching times of less than 3 minutes, and a modulation in transmission of 32% with an unprecedented EC:PV areal ratio

    Stepwise Observation and Quantification and Mixed Matrix Membrane Separation of CO2 within a Hydroxy-Decorated Porous Host

    Get PDF
    The identification of preferred binding domains within a host structure provides important insights into the function of materials. State-of-the-art reports mostly focus on crystallographic studies of empty and single component guest-loaded host structures to determine the location of guests. However, measurements of material properties (e.g., adsorption and breakthrough of substrates) are usually performed for a wide range of pressure (guest coverage) and/or using multi-component gas mixtures. Here we report the development of a multifunctional gas dosing system for use in X-ray powder diffraction studies on Beamline I11 at Diamond Light Source. This facility is fully automated and enables in situ crystallographic studies of host structures under (i) unlimited target gas loadings and (ii) loading of multi-component gas mixtures. A proof-of-concept study was conducted on a hydroxyl-decorated porous material MFM-300(V-III) under (i) five different CO2 pressures covering the isotherm range and (ii) the loading of equimolar mixtures of CO2/N-2. The study has successfully captured the structural dynamics underpinning CO2 uptake as a function of surface coverage. Moreover, MFM-300(V-III) was incorporated in a mixed matrix membrane (MMM) with PIM-1 in order to evaluate the CO2/N-2 separation potential of this material. Gas permeation measurements on the MMM show a great improvement over the bare PIM-1 polymer for CO2/N-2 separation based on the ideal selectivity

    A Framework for Text Mining Services

    Get PDF
    The growth of online scientific literature, coupled with the growing maturity of text processing technology, has boosted the importance of text mining as a potentially crucial tool. However, there are several challenges to be addressed before sophisticated text mining services can be deployed within emerging workflow environments. Our work contributes at two levels. At the invocation level, we have developed a flexible XML-based pipeline architecture which allows non-XML processors to be readily integrated. At the description/discovery level, we have developed a broker for service composition, and an accompanying domain ontology, that leverage the OWL-S approach to service profiles.
    • …
    corecore