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Abstract

The growth of online scientific literature, coupled with the growing maturity of text processing
technology, has boosted the importance of text mining as a potentially crucial tool. However, there
are several challenges to be addressed before sophisticated text mining services can be deployed
within emerging workflow environments. Our work contributes at two levels. At the invocation
level, we have developed a flexibleXML -based pipeline architecture which allows non-XML pro-
cessors to be readily integrated. At the description/discovery level, we have developed a broker for
service composition, and an accompanying domain ontology, that leverage theOWL-S approach to
service profiles.

1 Introduction

There is increasing interest in deploying text min-
ing tools to assist researchers in various tasks. For
example, a social historian may wish to query a
gazetteer with location names retrieved from a col-
lection of transcribed interviews in order to obtain
parish codes; these can then be used in analysing
aggregate regional statistics for the period. An as-
tronomer who detects an X-ray signal in some region
of the sky may want to investigate the online liter-
ature to see if any interesting infra-red signals were
detected in the same region. And a biologist who has
been given a list of 100 genes detected in a micro-
array experiment may wish to trawl through the ex-
isting published research for papers which throw
light on the function of these genes.

In such scenarios, we envisage the researcher us-
ing a workflow editor to incorporate one or more
text mining services within a larger application. The
service might be essentially a document classifica-
tion tool which retrieves documents in response to
a string of keywords. However, it might be more
elaborate, such as an information extraction sys-
tem which populates a database that is subsequently
queried by some further service.

Typically, a text mining system that is deployed
as a service will have been assembled out of mod-
ules, each of which carries out a specific natural lan-
guage processing (NLP) task. For example, an in-

formation extraction system might include modules
for tokenization, part-of-speech tagging, named en-
tity recognition, and relation detection. Thescientist
end-userwill not care about the details of these mod-
ules, and we might assume therefore that the service
is presented as a black box. Nevertheless, there are
a number of reasons why we might care about the
internal architecture.

First, the external surface of a service might
change according to the application: in one case, the
output of the relation detector would be directed to
a database service or a presentation layer; in a sec-
ond case, the relation detector would be discarded,
and the output of the named entity recognizer would
be exposed as the external interface. For the sake
of generality, therefore, we do not want to impose
too rigid a grain-size on the components that can be
offered as services.

Second, aproviderof text mining services would
want the ability to easily reconfigure systems for
both testing and deployment purposes. In general,
new application domains will require statistically
based tools to be retrained, and rule-based tools to be
provided with new rule sets; these will both poten-
tially affect the overall system configuration. More
importantly, ongoing rapid progress in the develop-
ment of data-intensive text processing tools has the
consequence that the top-performing systems will
usually be heterogeneous, in the sense of incorpo-
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rating processing modules developed by a variety of
research groups. This argues strongly in favour of
an underlying architecture which supports loosely-
coupled, interchangeable processors. This in turn
raises the possibility that a text mining system which
is presented as a black box to the scientist end-
user might in fact be decomposable for the com-
putational linguist as a workflow of independent,
reusable services—in other words, we might want
to offer the computational linguist a workflow en-
vironment that allows her to rapidly prototype and
test applications built from tools exposed as web ser-
vices. In such a case, we could interoperate with the
end user by providing a pre-packaged workflow that
could be included within a larger application.

In order to explain our perspective on text mining
services, we will start (Section 2) by describing our
underlying XML -oriented approach to shallow text
processing. In order to illustrate the kind of utility
that our text processing tools support, we will focus
on a task that arose in from collaborative work with
EDINA1 on the theJISC-fundedgeoXwalk project,2

namely identifying placenames in text documents.
We will then briefly describe how we have put to-
gether a series of text processing steps into a service-
oriented workflow that contributes to the overall ap-
plication. In Section 3, we turn to the question of
how to use semantic characterizations of text pro-
cessing services in order to help the user discover
and compose the services into useful applications.

2 LT-XML Language Processing

2.1 Overview

The LT-XML [12] architecture for text processing
was designed to support loosely coupled processors
of the kind just alluded to, but using command line
programs communicating via Unix pipes. In order to
be pipelined in this way, all processors must share a
common data format, and the choice ofXML allows
us to accommodate a variety of models of linguis-
tic annotation. Following standard Unix philosophy,
individual processors each carry out very specific
tasks. However, the fact that they all stream their
input and output inXML allows them to be freely
combined, and different combinations of the same
suite of processors can carry out a range of com-
plex text processing tasks. Example applications de-
veloped over recent years include identifying gene
and protein names in Medline abstracts [7, 8, 6],
tokenizing technical terms in Medline abstracts as

a prelude to wide-coverage parsing [11, 10], ex-
tracting information about laptop computer specifi-
cations from web pages [13], identifying geograph-
ical locations in Scottish historical documents [22],
and high-compression summarization of legal docu-
ments [9, 15].

To date, allNLP applications built withinLT-
XML have involved adding annotation to plain or
HTML -formatted textual input. With relatively min-
imal assumptions about the appropriate data model
for linguistic annotation, it is possible to adopt a sim-
ple processing model: each processor in a pipeline
(except the very first) inspects the markup produced
by the preceding processor, and modifies this or adds
new markup of its own. Although the markup pro-
cess need not be strictly monotonic,3 in practice it
almost always is. Figure 1 illustrates this point: in
the topmost tree, the text has been annotated to show
word (‘<w>’) and sentence (‘<s>’) units, while the
bottom tree has additional annotation which marks
part-of-speech information on words, and adds a
named entity element (‘<ne>’) of type location.

A base set ofLT-XML text processors has been
built usinglxtransduce, a general purpose deter-
ministic transducer which rewrites a stream of char-
acters orXML elements according to a set of rules.
The input is matched with regular expressions or
XPath patterns. Character input can be arbitrar-
ily modified and marked up withXML elements.
XML input can be re-ordered and marked up with
additional elements and attributes. Input can be
matched against lexicons and the lexical informa-
tion incorporated in the output. With suitable rule
sets,lxtransduce allows us to construct tokeniz-
ers, named entity recognizers and partial parsers.

However, as argued earlier, a high priority
is to allow heterogeneous systems, incorporating
third-party— typically non-XML —processors into
an XML -based pipeline. This requires us to use for-
mat converters (or ‘shims’ following [24]) to map
out of, and back into,XML . Most of our legacy
code addresses this need withad hocscripts written
in xmlperl,4 a powerful and flexible tool for rapid
prototyping. However, we are also experimenting
with XSLT stylesheets for conversion out ofXML ,
and with Yacc/Bison for the converssion intoXML .

The creation of reliable shims is important since
the performance of most text processing applications
is usually limited by the performance of the weakest
component. However, mostNLP frameworks (e.g.,
GATE [3], SDL [18] and to a certain extentLT-XML )

1http://edina.ac.uk/
2http://www.geoxwalk.ac.uk/
3By ‘monotonic’, we mean that annotations can be added but not removed.
4http://www.cogsci.ed.ac.uk/˜dmck/xmlstuff/



limit the use of processors available in an applica-
tion to those that conform to their internal data inter-
change format. Since state-of-the-art tools often use
non-XML formats, shims must be created for those
tools so that they can be integrated and thus obtain
the optimal performance for the system as a whole.

However, when modularizing a text processor
and creating its shim we do not want to limit its
use to theXML data interchange format of a particu-
lar framework. By publishing theXML format used
by the output and input of a processor (e.g. mak-
ing its XML Schema orDTD publicly available), it
should often be possible to create anXSLT stylesheet
to translate between theXML data interchange for-
mats used by the various frameworks and proces-
sors. If processors are wrapped using one of the pop-
ular XML data interchange formats, then only a few
standard transformations from one common data in-
terchange format to another may need to be created.
By using the method of schema inclusion, only the
relevant parts of theXML data interchange formats
need to translated. This approach lets anyNLP pro-
cessor be used in any text processing workflow, pro-
vided that mappings can be created between the rel-
evant parts of the data formats. For our particular
pipeline we used the LT-XML data interchange for-
mat, and mappings can be created from that format
to parts of other formats such asNITE [2].

Starting

<w>

in Inverness

<w> <w>

<s>

Starting

<w p='VBG'>

in Inverness

<w p='IN'> <w p='NN'>

<s>

<ne type='loc'>

Figure 1: IncrementalXML Annotation

2.2 GeoParsing

We will illustrate a typical usage of our tools by
focussing ongeoparsing—the task of automatically
identifying location names in documents. This needs
to be seen within the broader context of working
with spatial data.

A wide range of socio-economic data, for exam-
ple on population size, health, crime, and unemploy-
ment. is regularly collected and published by organi-
zations and governments. Such datasets relate their
primary variables to spatial information in various
ways [20]; in particular, they use differentgeogra-
phies, ranging from explicit grid references or parish
codes to implicit references such as postal addresses
or association with a placename. In order to sup-
port the process of relating data to a representation of
its spatial scope (sometimes calledgeo-referencing,
services such asgeoXwalk[5] have been developed
to translate between these different geographies.

Mapping across different systems of spatial ref-
erence allows for the fusion of different datasets,
which in turn is a precondition for sophisticated
mapping. For example, a social scientist studying
the relationship between crime and deprivation in
Scotland might want to draw athematic mapshow-
ing the strength of the spatial correlation between
crimes occuring in a given place and standardized
scores of deprivation in the same area [21]; the for-
mer might be based on address geo-referenced po-
lice incidence records and the latter on UK Census
boundaries.

The particular geoparsing system we describe
here is intended to takeHTML documents as in-
put, and to output documents with the sameHTML

markup, but supplemented with<span> tags which
visually highlight the placenames in the document.
Figure 2 gives a browser view of a document after lo-
cation names have been marked up. In recent exper-
iments that we have carried out, running the geop-
arser (which incorporates an off-the-shelf maximum
entropy classifier [4]) over a test set drawn from the
Statistical Accounts of Scotland has achieved excel-
lent results, with anf -score (combined precision and
recall) over 94%; see [22] for more details.

In addition, the system uses the location names
extracted from the source text to query an online
gazetteer service.5 For example, a placename query
for Sudburywill retrieve anXML record which con-
tains an elementstandard-reports that is made
up of a sequence ofgazetteer-standard-report
elements, one for each gazetteer entry. Each of these
in turn contains abounding-box element that spec-
ifies the location’s bounding coordinates. There is
also an element to describe the location sub-type:

5The service is hosted byEDINA athttp://dearg.ucs.ed.ac.uk:9101/adlcrosswalk/.



Figure 2: Web page marked up with location name

e.g., there areSudburyentries variously annotated as
‘parish admin’, ‘ward’, and ‘village or hamlet’. The
module which sends queries to the gazetteer uses the
query results to create a newXML document con-
taining a list ofvirtual locations found in the
input document: ‘virtual’ because the same name is
often shared by more than one place; for example,
there exist around 30 places called ‘Aberdeen’ on
earth, and England alone has two ‘Leeds’. We are
currently working on methods to resolve these am-
biguities automatically [19]. The results return by
the query module are illustrated in Figure 3.

<virtual_location>
<occurrence>
<text>Sudbury</text>
<index>49</index>
</occurrence>
<occurrence>
<text>Sudbury</text>
<index>65</index>
</occurrence>
<standard-reports>

...
</standard-reports>

</virtual_location>

Figure 3: A list of virtual locations

That is, avirtual location lists the tokens which
have been marked as placenames in the text, to-
gether with the token identifiers, and then gives the
standard-reports element from the output of the
gazetteer query. The information in thisXML file
can be presented in an interactive window which al-
lows the user to disambiguate the intended referent
of the placename, to select places of particular inter-
est, ask for more information about them from other

sources, and request a map which displays the se-
lected places.

2.3 Service Architecture

The initial implementation of the geoparser de-
scribed above ran as a single Unix script on a sin-
gle system. However, by making its major mod-
ules available as web services, the entire system can
become distributed across multiple platforms, and
components can be reused and interchanged.

Nevertheless, the foundation of many text pro-
cessing components as pipelines has ramifications
for their development as web services. Many web
services are currently based on well-defined typed
arguments, typically with the service itself built
over a strongly-typed programming language such
as Java. In contrast, text processing web services
are almost always document-centred, exchanging
and passing linguistic information asXML input
and output documents embedded withinSOAP mes-
sages. While these documents may be validated by
a schema, the crucial information needed by the web
service is embedded within a singleXML input doc-
ument itself, not as multiple strongly-typed param-
eters. Also, a singleXML document is usually re-
turned as the output. To facilitate this document-
centric approach to web service workflows, we cre-
ated our own web service wrappers and servers.

The first stage in transforming the geoparser into
a service oriented application involves identifying
the major modules within the geoparser, so that each
module can be turned into an independent web ser-
vice and composed into a workflow. The level of
granularity is necessarily open to discussion, but we
have been guided by what we take to be the ‘min-
imal units of reusability’. The resulting workflow
involves four major steps:



Tokenization: Identifying and marking up words
and sentences in the input text.

Location Tagging with a classifier: Using a
trained maximum entropy classifier to mark
up location names.

Location Tagging by Lexicon: Using a lexicon of
location names to mark up additional loca-
tions not identifier by the tagger.

Gazetteer Query: Sending location names ex-
tracted from the text to a gazetteer re-
source, and presenting the query results in an
application-appropriate form.

In addition, the worklow is initiated by a step that
convertsHTML markup intoXML , and terminated by
a step that re-converts theXML back intoHTML .

Figure 4: View of Location Tagging Workflow

Each of these steps is implemented as shell script
on Linux, and consists of a pipeline of command-
line programs. The scripts are then wrapped as
web service using a utility calledlxsoap. A sim-
ple configuration file acts as the input to anXSLT

transformation that creates aWSDL file describing
the service; it also allowslxsoap to map between
SOAPmessages and the program’s input, output and
command-line arguments. We have successfully re-
constructed the overall tool pipeline as a workflow
by calling these services from the Taverna Work-
bench.6

3 Ontology-based Service Dis-
covery

Although web services can be composed into a
workflow by simply selecting them from a list, as
allowed by the Taverna Workbench, it would be
desirable to use a more semantically-oriented ap-
proach to composing services. To move towards
a semantic service environment, over the last cou-
ple of years theOWL-S upper ontology for describ-
ing web services has been developed. The intention
of this effort is to provide anXML -based ontology
which stipulates the basic information that services
should expose to the environment in order to facili-
tate their automatic discovery, invocation, composi-
tion and monitoring [23]. This ontology is specified
in the OWL Web Ontology Language, which pro-
vides a language for specifying Description Logic
constructs in the syntax ofXML and is built on top
of the RDF data model. For the purposes of discov-
ery, the most important aspect of theOWL-S ontol-
ogy is theService Profile. This describes the es-
sential capability of the service by characterizing it
in functional terms: the inputs a service expects, the
outputs it produces, the preconditions that are placed
on the service and the effects that the service has.
By ‘typing’ data in this fashion, the ability to define
and instantiate ‘semantic pipelines’ of data through a
workflow consisting of a number of distinct services
also becomes possible.

The OWL-S ontology is domain-independent: to
express concepts of particular domains it is neces-
sary to extend theOWL-S ontology into these do-
mains through the use of additional ontologies. We
have developed such an ontology in the domain of
NLP (specifically, by extending theOWL-S notion of
a Profile Hierarchy ).7 Our approach rests on the
following assumptions:

1. NLP processors have documents as both input
and output.

2. Documents have properties which impose pre-
conditions on the processors and which also
record the effects of processing.

3. A specification of the properties of docu-
ments, as input/output parameters, induces a
classification ofNLP processors.

Figure 5 illustrates the case of a part-of-speech tag-
ger, defined so that its input document is marked-up
for word and sentence tokens, while its output is a
document which is in addition marked-up for parts
of speech.

6http://taverna.sourceforge.net
7For more details, see [17].



Document
hasAnnotation       {word}

Document
hasAnnotation     {word,POS}

Tagging
Tool

Figure 5: TheTagger class as a function

We can subclassDocument class in various ways
in order to further refine different classes of proces-
sors, as illustrated in in Figure 6.

In order to be able to reason aboutNLP services,
we have developed a broker service, built on top
of the RACER [14] Description Logic engine. The
broker maintains a description of theNLP ontology;
when it receives service advertisements, which have
been described usingOWL-S and the domain ontol-
ogy, it classifies and stores them as instances of the
appropriate class in the hierarchy. On receiving an
OWL-S query, it composes a class description from
this and then returns, as potential solutions, any ser-
vice instances of classes subsumed by this descrip-
tion.

On the client side, we have developed a proto-
type composition tool for composing sequences of
services and querying the broker. The user is able
to specify either the type of processing resource that
is needed, or the constraints on the data inputs and
outputs to some abstract service (or a combination of
both); and the tool constructs the appropriateOWL-
S, sends this to the broker and then presents the al-
ternative services to the user. The selection menu
offered to the user is shown in Figure 7. Once a user
selects one of these, the tool fetches theURL of the
service to extract more detailed information about
the service, and the composition view is updated ac-
cordingly.

Figure 7: Selecting a Text Mining Tool from the
class hierarchy

The composition tool is able to output its con-
figuration file in Scufl format [1], thus enabling the
workflow to be saved, and to be enacted within Tav-
erna.

The text processing web services that we de-
scribed in Section 2 can be classified within the
framework of ourNLP Profile Hierarchy, and should
allow services such as the geoparser to be composed
by semantically-based brokering, although the exact
details of such a composition are still under investi-
gation.

4 Conclusion

In this paper, we have addressed two potential user
populations: the scientist who is a potential con-
sumer of text mining applications but is not inter-
ested in the internal make-up of the applications, and
the computational linguist who wishes to construct
text mining applications from a combination of in-
house and third-party tools. We believe that both
groups can benefit from ‘virtualizing’ language pro-
cessing tools as web services.

One of the key challenges in building on this
paradigm is to present the processors in a way that
supports robust interoperability. This can only be
achieved if the input and output types of processors
can be described using a rich vocabulary. We have
argued here for an ontology that leverages properties
of the class of documents that can be exchanged be-
tween the processors; although this does not exhaust
all the constraints on interoperability, it does provide
a promising basis for capturing the functional core,
especially in terms of the data transformations car-
ried out byNLP processors.

Given the huge amount of linguistic informa-
tion available online, from natural language anno-
tations in databases to the text available on the Web
itself, robust and scalableNLP applications are ur-
gently needed for text-mining. By wrappingNLP

components as web services, cutting-edge technol-
ogy can be made readily available for use for real-
world problems. In this paper, as a proof-of concept,
we showed how a real-world application could be
constructed within a standard web service workflow
environment.

There are a number of issues for future re-
search. For very large documents, the network la-
tency involved in web services could lead to possibly
slower results than a single central installation. Fur-
thermore, many text processing components have a
heavy statistical component which can make their
processing time over large documents slow as well.
With the further development of the Grid and its in-
tegration with web services, the problems of lim-
ited bandwidth and slow processing time should be
compensated for. For example, a statistical tagger
that invokes high computational costs could have its
workload shortened by sending itself as a job to the



Document
hasMIME-Type            MIME-Type  
hasDataFormat            anyURI
hasAnnotation             {word}

Document
hasMIME-Type            text  
hasDataFormat            anyURI
hasAnnotation             {word}

Document
hasMIME-Type            text/xml  
hasDataFormat            anyURI
hasAnnotation             {word}

Document
hasMIME-Type            MIME-Type  
hasDataFormat            tabbed.dtd
hasAnnotation             {word}

ISAISA

ISA

Figure 6: Subclasses ofDocument

Grid, and so play a role in a workflow without serv-
ing as a bottleneck on performance time. There is
already evidence that for someNLP tasks the use of
the Grid as opposed to a single system can improve
performance time over very large data sets, and the
results improve as the data set gets larger.[16] In this
regard, the future development of web services and
e-science is likely to play an increasingly important
role in the development of large-scale, rapid, high-
performance text-mining.
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