3,300 research outputs found

    The Safe Use of Fungi for Biological Control of Weeds

    Get PDF

    Conformal GaP layers on Si wire arrays for solar energy applications

    Get PDF
    We report conformal, epitaxial growth of GaP layers on arrays of Si microwires. Silicon wires grown using chlorosilane chemical vapor deposition were coated with GaP grown by metal-organic chemical vapor deposition. The crystalline quality of conformal, epitaxial GaP/Si wire arrays was assessed by transmission electron microscopy and x-ray diffraction. Hall measurements and photoluminescence show p- and n-type doping with high electron mobility and bright optical emission. GaP pn homojunction diodes on planar reference samples show photovoltaic response with an open circuit voltage of 660 mV

    10 µm minority-carrier diffusion lengths in Si wires synthesized by Cu-catalyzed vapor-liquid-solid growth

    Get PDF
    The effective electron minority-carrier diffusion length, L_(n,eff), for 2.0 µm diameter Si wires that were synthesized by Cu-catalyzed vapor-liquid-solid growth was measured by scanning photocurrent microscopy. In dark, ambient conditions, L_(n,eff) was limited by surface recombination to a value of ≤ 0.7 µm. However, a value of L_(n,eff) = 10.5±1 µm was measured under broad-area illumination in low-level injection. The relatively long minority-carrier diffusion length observed under illumination is consistent with an increased surface passivation resulting from filling of the surface states of the Si wires by photogenerated carriers. These relatively large L_(n,eff) values have important implications for the design of high-efficiency, radial-junction photovoltaic cells from arrays of Si wires synthesized by metal-catalyzed growth processes

    The effect of feeding a low iron diet prior to and during gestation on fetal and maternal iron homeostasis in two strains of rat

    Get PDF
    Background Iron deficiency anaemia during pregnancy is a global problem, with short and long term consequences for maternal and child health. Animal models have demonstrated that the developing fetus is vulnerable to maternal iron restriction, impacting on postnatal metabolic and blood pressure regulation. Whilst long-term outcomes are similar across different models, the commonality in mechanistic events across models is unknown. This study examined the impact of iron deficiency on maternal and fetal iron homeostasis in two strains of rat. Methods Wistar (n=20) and Rowett Hooded Lister (RHL, n=19) rats were fed a control or low iron diet for 4 weeks prior to and during pregnancy. Tissues were collected at day 21 of gestation for analysis of iron content and mRNA/protein expression of regulatory proteins and transporters. Results A reduction in maternal liver iron content in response to the low iron diet was associated with upregulation of transferrin receptor expression and a reduction in hepcidin expression in the liver of both strains, which would be expected to promote increased iron absorption across the gut and increased turnover of iron in the liver. Placental expression of transferrin and DMT1+IRE were also upregulated, indicating adaptive responses to ensure availability of iron to the fetus. There were considerable differences in hepatic maternal and fetal iron content between strains. The higher quantity of iron present in livers from Wistar rats was not explained by differences in expression of intestinal iron transporters, and may instead reflect greater materno-fetal transfer in RHL rats as indicated by increased expression of placental iron transporters in this strain. Conclusions Our findings demonstrate substantial differences in iron homeostasis between two strains of rat during pregnancy, with variable impact of iron deficiency on the fetus. Whilst common developmental processes and pathways have been observed across different models of nutrient restriction during pregnancy, this study demonstrates differences in maternal adaptation which may impact on the trajectory of the programmed response

    High-performance Si microwire photovoltaics

    Get PDF
    Crystalline Si wires, grown by the vapor–liquid–solid (VLS) process, have emerged as promising candidate materials for lowcost, thin-film photovoltaics. Here, we demonstrate VLS-grown Si microwires that have suitable electrical properties for high-performance photovoltaic applications, including long minority-carrier diffusion lengths (L_n » 30 µm) and low surface recombination velocities (S « 70 cm·s^(-1)). Single-wire radial p–n junction solar cells were fabricated with amorphous silicon and silicon nitride surface coatings, achieving up to 9.0% apparent photovoltaic efficiency, and exhibiting up to ~600 mV open-circuit voltage with over 80% fill factor. Projective single-wire measurements and optoelectronic simulations suggest that large-area Si wire-array solar cells have the potential to exceed 17% energy-conversion efficiency, offering a promising route toward cost-effective crystalline Si photovoltaics

    Si microwire-array solar cells

    Get PDF
    Si microwire-array solar cells with Air Mass 1.5 Global conversion efficiencies of up to 7.9% have been fabricated using an active volume of Si equivalent to a 4 μm thick Si wafer. These solar cells exhibited open-circuit voltages of 500 mV, short-circuit current densities (J_(sc)) of up to 24 mA cm^(-2), and fill factors >65% and employed Al_2O_3 dielectric particles that scattered light incident in the space between the wires, a Ag back reflector that prevented the escape of incident illumination from the back surface of the solar cell, and an a-SiN_x:H passivation/anti-reflection layer. Wire-array solar cells without some or all of these design features were also fabricated to demonstrate the importance of the light-trapping elements in achieving a high J_(sc). Scanning photocurrent microscopy images of the microwire-array solar cells revealed that the higher J_(sc) of the most advanced cell design resulted from an increased absorption of light incident in the space between the wires. Spectral response measurements further revealed that solar cells with light-trapping elements exhibited improved red and infrared response, as compared to solar cells without light-trapping elements

    Ant-infecting Ophiocordyceps genomes reveal a high diversity of potential behavioral manipulation genes and a possible major role for enterotoxins

    Get PDF
    Much can be gained from revealing the mechanisms fungal entomopathogens employ. Especially intriguing are fungal parasites that manipulate insect behavior because, presumably, they secrete a wealth of bioactive compounds. To gain more insight into their strategies, we compared the genomes of five ant-infecting Ophiocordyceps species from three species complexes. These species were collected across three continents, from five different ant species in which they induce different levels of manipulation. A considerable number of (small) secreted and pathogenicity-related proteins were only found in these ant-manipulating Ophiocordyceps species, and not in other ascomycetes. However, few of those proteins were conserved among them, suggesting that several different methods of behavior modification have evolved. This is further supported by a relatively fast evolution of previously reported candidate manipulation genes associated with biting behavior. Moreover, secondary metabolite clusters, activated during biting behavior, appeared conserved within a species complex, but not beyond. The independent co-evolution between these manipulating parasites and their respective hosts might thus have led to rather diverse strategies to alter behavior. Our data indicate that specialized, secreted enterotoxins may play a major role in one of these strategies

    GaP/Si wire array solar cells

    Get PDF
    Si wire arrays have recently demonstrated their potential as photovoltaic devices [1-3]. Using these arrays as a base, we consider a next generation, multijunction wire array architecture consisting of Si wire arrays with a conformal GaN_xP_(1-x-y)As_y coating. Optical absorption and device physics simulations provide insight into the design of such devices. In particular, the simulations show that much of the solar spectrum can be absorbed as the angle of illumination is varied and that an appropriate choice of coating thickness and composition will lead to current matching conditions and hence provide a realistic path to high efficiencies. We have previously demonstrated high fidelity, high aspect ratio Si wire arrays grown by vapor-liquid-solid techniques, and we have now successfully grown conformal GaP coatings on these wires as a precursor to considering quaternary compound growth. Structural, optical, and electrical characterization of these GaP/Si wire array heterostructures, including x-ray diffraction, Hall measurements, and optical absorption of polymer-embedded wire arrays using an integrating sphere were performed. The GaP epilayers have high structural and electrical quality and the ability to absorb a significant amount of the solar spectrum, making them promising for future multijunction wire array solar cells
    corecore