research

Si microwire-array solar cells

Abstract

Si microwire-array solar cells with Air Mass 1.5 Global conversion efficiencies of up to 7.9% have been fabricated using an active volume of Si equivalent to a 4 μm thick Si wafer. These solar cells exhibited open-circuit voltages of 500 mV, short-circuit current densities (J_(sc)) of up to 24 mA cm^(-2), and fill factors >65% and employed Al_2O_3 dielectric particles that scattered light incident in the space between the wires, a Ag back reflector that prevented the escape of incident illumination from the back surface of the solar cell, and an a-SiN_x:H passivation/anti-reflection layer. Wire-array solar cells without some or all of these design features were also fabricated to demonstrate the importance of the light-trapping elements in achieving a high J_(sc). Scanning photocurrent microscopy images of the microwire-array solar cells revealed that the higher J_(sc) of the most advanced cell design resulted from an increased absorption of light incident in the space between the wires. Spectral response measurements further revealed that solar cells with light-trapping elements exhibited improved red and infrared response, as compared to solar cells without light-trapping elements

    Similar works