24,858 research outputs found

    Stable, inflatable life raft for high seas rescue operations

    Get PDF
    Raft is easily deployed and highly maneuverable in water. It has false bottom of water ballast containers attached to underside, making it exceptionally stable platform from which swimmers can operate. Raft is attachable to external moorings

    Lie point symmetries and the geodesic approximation for the Schr\"odinger-Newton equations

    Full text link
    We consider two problems arising in the study of the Schr\"odinger-Newton equations. The first is to find their Lie point symmetries. The second, as an application of the first, is to investigate an approximate solution corresponding to widely separated lumps of probability. The lumps are found to move like point particles under a mutual inverse-square law of attraction

    Least-squares methods for identifying biochemical regulatory networks from noisy measurements

    Get PDF
    <b>Background</b>: We consider the problem of identifying the dynamic interactions in biochemical networks from noisy experimental data. Typically, approaches for solving this problem make use of an estimation algorithm such as the well-known linear Least-Squares (LS) estimation technique. We demonstrate that when time-series measurements are corrupted by white noise and/or drift noise, more accurate and reliable identification of network interactions can be achieved by employing an estimation algorithm known as Constrained Total Least Squares (CTLS). The Total Least Squares (TLS) technique is a generalised least squares method to solve an overdetermined set of equations whose coefficients are noisy. The CTLS is a natural extension of TLS to the case where the noise components of the coefficients are correlated, as is usually the case with time-series measurements of concentrations and expression profiles in gene networks. <b>Results</b>: The superior performance of the CTLS method in identifying network interactions is demonstrated on three examples: a genetic network containing four genes, a network describing p53 activity and <i>mdm2</i> messenger RNA interactions, and a recently proposed kinetic model for interleukin (IL)-6 and (IL)-12b messenger RNA expression as a function of ATF3 and NF-κB promoter binding. For the first example, the CTLS significantly reduces the errors in the estimation of the Jacobian for the gene network. For the second, the CTLS reduces the errors from the measurements that are corrupted by white noise and the effect of neglected kinetics. For the third, it allows the correct identification, from noisy data, of the negative regulation of (IL)-6 and (IL)-12b by ATF3. <b>Conclusion</b>: The significant improvements in performance demonstrated by the CTLS method under the wide range of conditions tested here, including different levels and types of measurement noise and different numbers of data points, suggests that its application will enable more accurate and reliable identification and modelling of biochemical networks

    Life raft stabilizer

    Get PDF
    An improved life raft stabilizer for reducing rocking and substantially precluding capsizing is discussed. The stabilizer may be removably attached to the raft and is defined by flexible side walls which extend a considerable depth downwardly to one another in the water. The side walls, in conjunction with the floor of the raft, form a ballast enclosure. A weight is placed in the bottom of the enclosure and water port means are provided in the walls. Placement of the stabilizer in the water allows the weighted bottom to sink, producing submerged deployment thereof and permitting water to enter the enclosure through the port means, thus forming a ballast for the raft

    Intersubband carrier scattering in n- and p-Si/SiGe quantum wells with diffuse interfaces

    Get PDF
    Scattering rate calculations in two-dimensional Si/Si1−xGex systems have typically been restricted to rectangular Ge profiles at interfaces between layers. Real interfaces however, may exhibit diffuse Ge profiles either by design or as a limitation of the growth process. It is shown here that alloy disorder scattering dramatically increases with Ge interdiffusion in (100) and (111) n-type quantum wells, but remains almost constant in (100) p-type heterostructures. It is also shown that smoothing of the confining potential leads to large changes in subband energies and scattering rates and a method is presented for calculating growth process tolerances

    Validity, reliability, acceptability, and utility of the Social Inclusion Questionnaire User Experience (SInQUE): a clinical tool to facilitate social inclusion amongst people with severe mental health problems.

    Get PDF
    BACKGROUND: Individuals with severe mental health problems are at risk of social exclusion, which may complicate their recovery. Mental health and social care staff have, until now, had no valid or reliable way of assessing their clients' social inclusion. The Social Inclusion Questionnaire User Experience (SInQUE) was developed to address this. It assesses five domains: social integration; productivity; consumption; access to services; and political engagement, in the year prior to first psychiatric admission (T1) and the year prior to interview (T2) from which a total score at each time point can be calculated. AIMS: To establish the validity, reliability, and acceptability of the SInQUE in individuals with a broad range of psychiatric diagnoses receiving care from community mental health services and its utility for mental health staff. METHOD: Participants were 192 mental health service users with psychosis, personality disorder, or common mental disorder (e.g., depression, anxiety) who completed the SInQUE alongside other validated outcome measures. Test-retest reliability was assessed in a sub-sample of 30 participants and inter-rater reliability was assessed in 11 participants. SInQUE ratings of 28 participants were compared with those of a sibling with no experience of mental illness to account for shared socio-cultural factors. Acceptability and utility of the tool were assessed using completion rates and focus groups with staff. RESULTS: The SInQUE demonstrated acceptable convergent validity. The total score and the Social Integration domain score were strongly correlated with quality of life, both in the full sample and in the three diagnostic groups. Discriminant validity and test-retest reliability were established across all domains, although the test-retest reliability on scores for the Service Access and Political Engagement domains prior to first admission to hospital (T1) was lower than other domains. Inter-rater reliability was excellent for all domains at T1 and T2. CONCLUSIONS: The component of the SInQUE that assesses current social inclusion has good psychometric properties and can be recommended for use by mental health staff

    A Cosmic Battery

    Get PDF
    We show that the Poynting-Robertson drag effect in an optically thin advection-dominated accretion flow around active gravitating objects generates strong azimuthal electric currents which give rise to astrophysically significant magnetic fields. Although the mechanism is most effective in accreting compact objects, it seems very promising to also account for the generation of stellar dipolar fields during the late protostellar collapse phase, when the star approaches the main sequence.Comment: 12 pages Latex, 1 postscript figure, to appear in the Astrophysical Journa

    Effects of rapid thermal annealing on device characteristics of InGaAs/GaAs quantum dot infrared photodetectors

    Get PDF
    In this work, rapid thermal annealing was performed on InGaAs/GaAs quantum dot infrared photodetectors (QDIPs) at different temperatures. The photoluminescence showed a blueshifted spectrum in comparison with the as-grown sample when the annealing temperature was higher than 700 °C, as a result of thermal interdiffusion of the quantum dots (QDs). Correspondingly, the spectral response from the annealed QDIP exhibited a redshift. At the higher annealing temperature of 800 °C, in addition to the largely redshifted photoresponse peak of 7.4 µm (compared with the 6.1 µm of the as-grown QDIP), a high energy peak at 5.6 µm (220 meV) was also observed, leading to a broad spectrum linewidth of 40%. This is due to the large interdiffusion effect which could greatly vary the composition of the QDs and thus increase the relative optical absorption intensity at higher energy. The other important detector characteristics such as dark current, peak responsivity, and detectivity were also measured. It was found that the overall device performance was not affected by low annealing temperature, however, for high annealing temperature, some degradation in device detectivity (but not responsivity) was observed. This is a consequence of increased dark current due to defect formation and increased ground state energy. © 2006 American Institute of Physic

    Theory of valley-orbit coupling in a Si/SiGe quantum dot

    Full text link
    Electron states are studied for quantum dots in a strained Si quantum well, taking into account both valley and orbital physics. Realistic geometries are considered, including circular and elliptical dot shapes, parallel and perpendicular magnetic fields, and (most importantly for valley coupling) the small local tilt of the quantum well interface away from the crystallographic axes. In absence of a tilt, valley splitting occurs only between pairs of states with the same orbital quantum numbers. However, tilting is ubiquitous in conventional silicon heterostructures, leading to valley-orbit coupling. In this context, "valley splitting" is no longer a well defined concept, and the quantity of merit for qubit applications becomes the ground state gap. For typical dots used as qubits, a rich energy spectrum emerges, as a function of magnetic field, tilt angle, and orbital quantum number. Numerical and analytical solutions are obtained for the ground state gap and for the mixing fraction between the ground and excited states. This mixing can lead to valley scattering, decoherence, and leakage for Si spin qubits.Comment: 18 pages, including 4 figure

    Enhanced electron correlations, local moments, and Curie temperature in strained MnAs nanocrystals embedded in GaAs

    Full text link
    We have studied the electronic structure of hexagonal MnAs, as epitaxial continuous film on GaAs(001) and as nanocrystals embedded in GaAs, by Mn 2p core-level photoemission spectroscopy. Configuration-interaction analyses based on a cluster model show that the ground state of the embedded MnAs nanocrystals is dominated by a d5 configuration that maximizes the local Mn moment. Nanoscaling and strain significantly alter the properties of MnAs. Internal strain in the nanocrystals results in reduced p-d hybridization and enhanced ionic character of the Mn-As bonding interactions. The spatial confinement and reduced p-d hybridization in the nanocrystals lead to enhanced d-electron localization, triggering d-d electron correlations and enhancing local Mn moments. These changes in the electronic structure of MnAs have an advantageous effect on the Curie temperature of the nanocrystals, which is measured to be remarkably higher than that of bulk MnAs.Comment: 4 figures, 2 table
    corecore