1,011 research outputs found

    Individual surgeon mortality rates: can outliers be detected? A national utility analysis

    Get PDF
    Objectives: There is controversy on the proposed benefits of publishing mortality rates for individual surgeons. In some procedures, analysis at the level of an individual surgeon may lack statistical power. The aim was to determine the likelihood that variation in surgeon performance will be detected using published outcome data. Design: A national analysis surgeon-level mortality rates to calculate the level of power for the reported mortality rate across multiple surgical procedures. Setting: The UK from 2010 to 2014. Participants: Surgeons who performed colon cancer resection, oesophagectomy or gastrectomy, elective aortic aneurysm repair, hip replacement, bariatric surgery or thyroidectomy. Outcomes: The likelihood of detecting an individual with a 30-day, 90-day or in-patient mortality rate of up to 5 times the national mean or median (as available). This was represented using a novel heat-map approach. Results: Overall mortality rates for the procedures ranged from 0.07% to 4.5% and mean/median surgeon volume was between 23 and 75 cases. The national median case volume for colorectal (n=55) and upper gastrointestinal (n=23) cancer resections provides around 20% power to detect a mortality rate of 3 times the national median, while, for hip replacement, this is a rate 5 times the national average. At the mortality rates reported for thyroid (0.08%) and bariatric (0.07%) procedures, it is unlikely a surgeon would perform a sufficient number of procedures in his/her entire career to stand a good chance of detecting a mortality rate 5 times the national average. Conclusions: At present, surgeons with increased mortality rates are unlikely to be detected. Performance within an expected mortality rate range cannot be considered reliable evidence of acceptable performance. Alternative approaches should focus on commonly occurring meaningful outcome measures, with infrequent events analysed predominately at the hospital level

    Using thermoluminescence signals from feldspars for low-temperature thermochronology

    Get PDF
    Natural thermoluminescence (TL) signals from feldspar crystals extracted from thermally stable drill cores (View the MathML sourceC) exhibit a strong dependence on geologic and laboratory thermal conditions. As burial temperature increases, the position of the TL glow curve at half-maximum intensity (i.e., the T1/2 parameter) shifts to higher measurement temperatures. This shift is also observed following isothermal treatments in the laboratory. This relationship can be explained using a kinetic model originally developed for the optical luminescence dating of feldspar grains. The thermal history of a sample is preserved in the degree of electron trap saturation as a function of thermal detrapping probability, which varies with recombination distance. A natural feldspar sample contains a range of thermal stabilities: the least stable traps will remain empty, the most stable will be full, and those traps which are partially filled will, in the case of thermal equilibrium, be diagnostic of the storage temperature. The T1/2 parameter of a TL glow curve reflects which sites remain occupied. This interpretation is further borne out by additive dose measurements which illustrate that samples buried at lower temperatures are fully saturated at lower TL measurement temperatures (View the MathML sourceC) relative to warmer samples. This signal is estimated to be useful in rapidly-cooling bedrock and should grow measurably for ∼102−106 years

    Interlayer Exchange Coupling Mediated by Valence Band Electrons

    Full text link
    The interlayer exchange coupling mediated by valence band electrons in all-semiconductor IV-VI magnetic/nonmagnetic superlattices is studied theoretically. A 3D tight-binding model, accounting for the band and magnetic structure of the constituent superlattice components is used to calculate the spin-dependent part of the total electronic energy. The antiferromagnetic coupling between ferromagnetic layers in EuS/PbS superlattices is obtained, in agreement with the experimental evidences. The results obtained for the coupling between antiferromagnetic layers in EuTe/PbTe superlattices are also presented.Comment: 8 pages, 6 figures, to be submitted to Phys.Rev.

    A solenoidal electron spectrometer for a precision measurement of the neutron β\beta-asymmetry with ultracold neutrons

    Full text link
    We describe an electron spectrometer designed for a precision measurement of the neutron β\beta-asymmetry with spin-polarized ultracold neutrons. The spectrometer consists of a 1.0-Tesla solenoidal field with two identical multiwire proportional chamber and plastic scintillator electron detector packages situated within 0.6-Tesla field-expansion regions. Select results from performance studies of the spectrometer with calibration sources are reported.Comment: 30 pages, 19 figures, 1 table, submitted to NIM

    Amine Templated Zinc Phosphates Phases for Membrane Separations

    Get PDF
    This research is focused on developing inorganic molecular sieve membranes for light gas separations such as hydrogen recovery and natural gas purification, and organic molecular separations, such as chiral enantiomers. The authors focus on zinc phosphates because of the ease in crystallization of new phases and the wide range of pore sizes and shapes obtained. With hybrid systems of zinc phosphate crystalline phases templated by amine molecules, the authors are interested in better understanding the association of the template molecules to the inorganic phase, and how the organic transfers its size, shape, and (in some cases) chirality to the bulk. Furthermore, the new porous phases can also be synthesized as thin films on metal oxide substrates. These films allow one to make membranes from organic/inorganic hybrid systems, suitable for diffusion experiments. Characterization techniques for both the bulk phases and the thin films include powder X-ray diffraction, TGA, Scanning Electron Micrograph (SEM) and Electron Dispersive Spectrometry (EDS)

    The utility of exhaled nitric oxide in patients with suspected asthma

    Get PDF
    The value of FENO measurements in patients with symptoms suggestive of asthma is unclear. We performed an observational study to assess the ability of FENO to diagnose asthma and to predict response to inhaled corticosteroids (ICS). Our findings suggest FENO is not useful for asthma diagnosis but is accurate at predicting ICS response

    Why equality? On justifying liberal egalitarianism

    Get PDF
    The debate over the nature of egalitarianism has come to dominate political philosophy. As ever more sophisticated attempts are made to describe the principles of an egalitarian distribution or to specify the good or goods that should be distributed equally, little is said about the fundamental basis of equality. In virtue of what should people be regarded as equal? Egalitarians have tended to dismiss this question of fundamental equality. In the first part of the paper I will examine some of these strategies of marginalisation and assess whether the issue of fundamental equality matters. Jeremy Waldron has criticised this strategy of avoidance in his recent book God, Locke and equality. He argues that Locke's turn to a theistic grounding for fundamental equality provides a better approach to the problem than the approach taken by contemporary liberals such as John Rawls. I will examine Waldron's critique of Rawls and show that it is wanting. I will conclude by suggesting that Rawls's approach to the issue has a bearing on the way in which equality should be understood as a political value. This argument for the primacy of a political conception of egalitarianism has a bearing on the interconnection between core liberal values and the idea of the state that has been emphasised by Rawls, Dworkin and Nagel

    Structure, Photophysics and the Order-Disorder Transition to the Beta Phase in Poly(9,9-(di -n,n-octyl)fluorene)

    Full text link
    X-ray diffraction, UV-vis absorption and photoluminescence (PL) spectroscopy have been used to study the well-known order-disorder transition (ODT) to the beta phase in poly(9,9-(di n,n-octyl)fluorene)) (PF8) thin film samples through combination of time-dependent and temperature-dependent measurements. The ODT is well described by a simple Avrami picture of one-dimensional nucleation and growth but crystallization, on cooling, proceeds only after molecular-level conformational relaxation to the so called beta phase. Rapid thermal quenching is employed for PF8 studies of pure alpha phase samples while extended low-temperature annealing is used for improved beta phase formation. Low temperature PL studies reveal sharp Franck-Condon type emission bands and, in the beta phase, two distinguishable vibronic sub-bands with energies of approximately 199 and 158 meV at 25 K. This improved molecular level structural order leads to a more complete analysis of the higher-order vibronic bands. A net Huang-Rhys coupling parameter of just under 0.7 is typically observed but the relative contributions by the two distinguishable vibronic sub-bands exhibit an anomalous temperature dependence. The PL studies also identify strongly correlated behavior between the relative beta phase 0-0 PL peak position and peak width. This relationship is modeled under the assumption that emission represents excitons in thermodynamic equilibrium from states at the bottom of a quasi-one-dimensional exciton band. The crystalline phase, as observed in annealed thin-film samples, has scattering peaks which are incompatible with a simple hexagonal packing of the PF8 chains.Comment: Submitted to PRB, 12 files; 1 tex, 1 bbl, 10 eps figure
    • …
    corecore