1,011 research outputs found

    A Potential Iterative Approach to 1,4-Dihydro-N-Heteroacene Arrays

    Get PDF
    Acknowledgements We are grateful to the UK EPSRC National Mass Spectrometry Service Centre for mass spectrometric data.Peer reviewedPublisher PD

    Crystal structure of 1-butyl-2,3-di-methylimidazolium dicarba-7,8-nido-undecaborate

    Get PDF
    AL thanks Professor Maitland Jones for the generous donation of the starting orthocarborane stock and Dr John Holbrey for the supply of imidazolium halide reagents. The research support by ACS PRF and Cottrell College awards (44692.01-GB and CC6755) is gratefully acknowledged.Peer reviewedPublisher PD

    Geomagnetic storm dependence on the solar flare class

    Full text link
    Content. Solar flares are often used as precursors of geomagnetic storms. In particular, Howard and Tappin (2005) recently published in A&A a dependence between X-ray class of solar flares and Ap and Dst indexes of geomagnetic storms which contradicts to early published results. Aims. We compare published results on flare-storm dependences and discuss possible sources of the discrepancy. Methods. We analyze following sources of difference: (1) different intervals of observations, (2) different statistics and (3) different methods of event identification and comparison. Results. Our analysis shows that magnitude of geomagnetic storms is likely to be independent on X-ray class of solar flares.Comment: 3 pages, 1 tabl

    3-Fluoro-4-hydroxyprolines:Synthesis, conformational analysis and stereoselective recognition by the VHL E3 ubiquitin ligase for targeted protein degradation

    Get PDF
    Hydroxylation and fluorination of proline alters the pyrrolidine ring pucker and the trans:cis amide bond ratio in a stereochemistry-dependent fashion, affecting molecular recognition of proline-containing molecules by biological systems. While hydroxyprolines and fluoroprolines are common motifs in medicinal and biological chemistry, the synthesis and molecular properties of prolines containing both modifications, i.e., fluoro-hydroxyprolines, have not been described. Here we present a practical and facile synthesis of all four diastereoisomers of 3-fluoro-4-hydroxyprolines (F-Hyps), starting from readily available 4-oxo-l-proline derivatives. Small-molecule X-ray crystallography, NMR spectroscopy, and quantum mechanical calculations are consistent with fluorination at C<sup>3</sup> having negligible effects on the hydrogen bond donor capacity of the C<sup>4</sup> hydroxyl, but inverting the natural preference of Hyp from C<sup>4</sup>-exo to C<sup>4</sup>-endo pucker. In spite of this, F-Hyps still bind to the von Hippel–Lindau (VHL) E3 ligase, which naturally recognizes C<sup>4</sup>-exo Hyp in a stereoselective fashion. Co-crystal structures and electrostatic potential calculations support and rationalize the observed preferential recognition for (3<i>R</i>,4<i>S</i>)-F-Hyp over the corresponding (3<i>S</i>,4<i>S</i>) epimer by VHL. We show that (3<i>R</i>,4<i>S</i>)-F-Hyp provides bioisosteric Hyp substitution in both hypoxia-inducible factor 1 alpha (HIF-1α) substrate peptides and peptidomimetic ligands that form part of PROTAC (proteolysis targeting chimera) conjugates for targeted protein degradation. Despite a weakened affinity, Hyp substitution with (3<i>S</i>,4<i>S</i>)-F-Hyp within the PROTAC MZ1 led to Brd4-selective cellular degradation at concentrations >100-fold lower than the binary <i>K</i><sub>d</sub> for VHL. We anticipate that the disclosed chemistry of 3-fluoro-4-hydroxyprolines and their application as VHL ligands for targeted protein degradation will be of wide interest to medicinal organic chemists, chemical biologists, and drug discoverers alike

    Accuracy and Limitations of Fitting and Stereoscopic Methods to Determine the Direction of Coronal Mass Ejections from Heliospheric Imagers Observations

    Full text link
    Using data from the Heliospheric Imagers (HIs) onboard STEREO, it is possible to derive the direction of propagation of coronal mass ejections (CMEs) in addition to their speed with a variety of methods. For CMEs observed by both STEREO spacecraft, it is possible to derive their direction using simultaneous observations from the twin spacecraft and also, using observations from only one spacecraft with fitting methods. This makes it possible to test and compare different analyses techniques. In this article, we propose a new fitting method based on observations from one spacecraft, which we compare to the commonly used fitting method of Sheeley et al. (1999). We also compare the results from these two fitting methods with those from two stereoscopic methods, focusing on 12 CMEs observed simultaneously by the two STEREO spacecraft in 2008 and 2009. We find evidence that the fitting method of Sheeley et al. (1999) can result in significant errors in the determination of the CME direction when the CME propagates outside of 60deg \pm 20 deg from the Sun-spacecraft line. We expect our new fitting method to be better adapted to the analysis of halo or limb CMEs with respect to the observing spacecraft. We also find some evidence that direct triangulation in the HI fields-of-view should only be applied to CMEs propagating approximatively towards Earth (\pm 20deg from the Sun-Earth line). Last, we address one of the possible sources of errors of fitting methods: the assumption of radial propagation. Using stereoscopic methods, we find that at least seven of the 12 studied CMEs had an heliospheric deflection of less than 20deg as they propagated in the HI fields-of-view, which, we believe, validates this approximation.Comment: 17 pages, 6 figures, 2 tables, accepted to Solar Physic

    Interplanetary and Geomagnetic Consequences of Interacting CMEs of 13-14 June 2012

    Full text link
    We report on the kinematics of two interacting CMEs observed on 13 and 14 June 2012. Both CMEs originated from the same active region NOAA 11504. After their launches which were separated by several hours, they were observed to interact at a distance of 100 Rs from the Sun. The interaction led to a moderate geomagnetic storm at the Earth with Dst index of approximately, -86 nT. The kinematics of the two CMEs is estimated using data from the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) onboard the Solar Terrestrial Relations Observatory (STEREO). Assuming a head-on collision scenario, we find that the collision is inelastic in nature. Further, the signatures of their interaction are examined using the in situ observations obtained by Wind and the Advance Composition Explorer (ACE) spacecraft. It is also found that this interaction event led to the strongest sudden storm commencement (SSC) (approximately 150 nT) of the present Solar Cycle 24. The SSC was of long duration, approximately 20 hours. The role of interacting CMEs in enhancing the geoeffectiveness is examined.Comment: 17 pages, 5 figures, Accepted in Solar Physics Journa
    corecore