4,991 research outputs found

    CSEFA Hub and Spoke Evaluation

    Get PDF
    This report details findings from the second year of a four-year evaluation of the 'Hub and Spoke' initiative, being undertaken by the University of Bedfordshire. Funded by the Child Sexual Exploitation Funders' Alliance (CSEFA), this initiative aims to improve services in relation to child sexual exploitation (CSE). It utilises the expertise, resources and infrastructure of an established voluntary sector CSE service (the 'Hub') by locating experienced CSE workers (known as 'Spoke workers') into new service delivery areas. The evaluation assesses the extent to which the Hub and Spoke model triggers cultural and systemic change in the way that services engaging with young people respond to CSE. Specifically it considers the impact of the Hub and Spoke model on: a) Safeguarding young people from sexual exploitation through service delivery b) Supporting and equipping specialist CSE workers to work effectively in host agencies c) Promoting stable CSE policy frameworks in new areas by raising awareness, developing procedures and improving how local policy makers respond to CSE

    What visual information is used for stereoscopic depth displacement discrimination?

    Get PDF
    There are two ways to detect a displacement in stereoscopic depth, namely by monitoring the change in disparity over time (CDOT) or by monitoring the inter-ocular velocity difference (IOVD). Though previous studies have attempted to understand which cue is most significant for the visual system, none have designed stimuli that provide a comparison in terms of relative efficiency between them. Here we used two-frame motion and random dot noise to deliver equivalent strengths of CDOT and IOVD information to the visual system. Using three kinds of random dot stimuli, we were able to isolate CDOT or IOVD or deliver both simultaneously. The proportion of dots delivering CDOT or IOVD signals could be varied, and we defined discrimination threshold as the proportion needed to detect the direction of displacement (towards or away)1. Thresholds were similar for stimuli containing CDOT only, and containing both CDOT and IOVD, but only one participant was able to consistently perceive the displacement for stimuli containing only IOVD. We also investigated the effect of disparity pedestals on discrimination. Performance was best when the displacement crossed the reference plane, but was not significantly different for stimuli containing CDOT only, or containing both CDOT and IOVD. When stimuli are specifically designed to provide equivalent two-frame motion or disparity-change, few participants can reliably detect displacement when IOVD is the only cue. This challenges the notion that IOVD is involved in the discrimination of direction of displacement in two-frame motion displays.PreprintPeer reviewe

    Two independent mechanisms for motion-in-depth perception : evidence from individual differences

    Get PDF
    Our forward-facing eyes allow us the advantage of binocular visual information: using the tiny differences between right and left eye views to learn about depth and location in three dimensions. Our visual systems also contain specialized mechanisms to detect motion-in-depth from binocular vision, but the nature of these mechanisms remains controversial. Binocular motion-in-depth perception could theoretically be based on first detecting binocular disparity and then monitoring how it changes over time. The alternative is to monitor the motion in the right and left eye separately and then compare these motion signals. Here we used an individual differences approach to test whether the two sources of information are processed via dissociated mechanisms, and to measure the relative importance of those mechanisms. Our results suggest the existence of two distinct mechanisms, each contributing to the perception of motion-in-depth in most observers. Additionally, for the first time, we demonstrate the relative prevalence of the two mechanisms within a normal population. In general, visual systems appear to rely mostly on the mechanism sensitive to changing binocular disparity, but perception of motion-in-depth is augmented by the presence of a less sensitive mechanism that uses interocular velocity differences. Occasionally, we find observers with the opposite pattern of sensitivity. More generally this work showcases the power of the individual differences approach in studying the functional organization of cognitive systems.Publisher PDFPeer reviewe

    Detecting binocular 3-D motion in static 3-D noise: No effect of viewing distance.

    Get PDF
    Relative binocular disparity cannot tell us the absolute 3-D shape of an object, nor its 3-D trajectory if it is moving, unless the visual system has independent access to how far away the object is at any moment. Indeed, as the viewing distance is changed, the same disparate retinal motions will correspond to very different real 3-D trajectories. In this paper we were interested in whether binocular 3-D motion detection is affected by viewing distance. We used a visual search task in which the observer is asked to detect a target dot, moving in 3-D, amidst 3-D stationary distractor dots. We found that distance does not affect detection performance. Motion-in-depth is consistently harder to detect than the equivalent lateral motion, for all viewing distances. For a constant retinal motion with both lateral and motion-in-depth components, detection performance is constant despite variations in viewing distance that produce large changes in the direction of the 3-D trajectory. We conclude that binocular 3-D motion detection relies on retinal, not absolute visual signals

    Establishing the behavioural limits for countershaded camouflage

    Get PDF
    Countershading is a ubiquitous patterning of animals whereby the side that typically faces the highest illumination is darker. When tuned to specific lighting conditions and body orientation with respect to the light field, countershading minimizes the gradient of light the body reflects by counterbalancing shadowing due to illumination, and has therefore classically been thought of as an adaptation for visual camouflage. However, whether and how crypsis degrades when body orientation with respect to the light field is non-optimal has never been studied. We tested the behavioural limits on body orientation for countershading to deliver effective visual camouflage. We asked human participants to detect a countershaded target in a simulated three-dimensional environment. The target was optimally coloured for crypsis in a reference orientation and was displayed at different orientations. Search performance dramatically improved for deviations beyond 15 degrees. Detection time was significantly shorter and accuracy significantly higher than when the target orientation matched the countershading pattern. This work demonstrates the importance of maintaining body orientation appropriate for the displayed camouflage pattern, suggesting a possible selective pressure for animals to orient themselves appropriately to enhance crypsis

    Is countershading camouflage robust to lighting change due to weather?

    Get PDF
    Countershading is a pattern of coloration thought to have evolved in order to implement camouflage. By adopting a pattern of coloration that makes the surface facing towards the sun darker and the surface facing away from the sun lighter, the overall amount of light reflected off an animal can be made more uniformly bright. Countershading could hence contribute to visual camouflage by increasing background matching or reducing cues to shape. However, the usefulness of countershading is constrained by a particular pattern delivering ‘optimal’ camouflage only for very specific lighting conditions. In this study, we test the robustness of countershading camouflage to lighting change due to weather, using human participants as a ‘generic’ predator. In a simulated three-dimensional environment, we constructed an array of simple leaf-shaped items and a single ellipsoidal target ‘prey’. We set these items in two light environments: strongly directional ‘sunny’ and more diffuse ‘cloudy’. The target object was given the optimal pattern of countershading for one of these two environment types or displayed a uniform pattern. By measuring detection time and accuracy, we explored whether and how target detection depended on the match between the pattern of coloration on the target object and scene lighting. Detection times were longest when the countershading was appropriate to the illumination; incorrectly camouflaged targets were detected with a similar pattern of speed and accuracy to uniformly coloured targets. We conclude that structural changes in light environment, such as caused by differences in weather, do change the effectiveness of countershading camouflage

    Differential response of barrier island dune grasses to species interactions and burial

    Get PDF
    Barrier islands are at the forefront of storms and sea-level rise. High disturbance regimes and sediment mobility make these systems sensitive and dynamic. Island foredunes are protective structures against storm-induced overwash that are integrally tied to dune grasses via biogeomorphic feedbacks. Shifts in dune grass dominance could influence dune morphology and susceptibility to overwash, altering island stability. In a glasshouse study, two dune grasses, Ammophila breviligulata and Uniola paniculata, were planted together and subjected to a 20 cm burial to quantify morphological and physiological responses. Burial had positive effects on both plants as indicated by increased electron transport rate and total biomass. Ammophila breviligulata performance declined when planted with U. paniculata. Uniola paniculata was not affected when planted with A. breviligulata but did have higher water use efficiency and nitrogen use efficiency. Planted in mixture, differential reallocation of biomass occurred between species potentially altering resource acquisition further. As U. paniculata migrates into A. breviligulata dominated habitat and A. breviligulata performance diminishes, biotic interactions between these and other species may affect dune formation and community structure. Our study emphasizes the importance of studying biotic interactions alongside naturally occurring abiotic drivers

    A study of a selection of Benjamin Britten's vocal music for mezzo-soprano

    Get PDF
    Includes bibliographical references (leaves 96-100).The present study, which will investigate three works of Benjamin Britten for mezzosopranos, is envisaged as an aid to interpreters wishing to gain further insights into these works. The study focuses on three vocal works of varying genre: The Rape of Lucretia, A Charm of Lullabies, and Phaedra. The investigation of each work starts with the historical background, in wh ich Britten's life and career at the time of the work is discussed briefly, including reviews of the work. The performers and librettists, who were involved in the composition, are also discussed. Secondly, an analytical survey is done on the text and music for each work. Brief background notes on the writers and poets, and on their style, influences and intentions, are included. The historical background of each text is explored, as well as the role of the character within the narrative, dramatic or literary/poetic context. The musical characteristics of each work are highlighted, which reveal stylistic aspects of Britten's writing. The influence of each work's genre (chamber opera, song cycle and solo cantata) on the interpretation of text and character is discussed, as well as how the voice is accompanied. Lastly, a comparative survey of different recorded portrayals of each work looks at the background history, and approach of the various performers, as well as their advice to other performers

    Future positive : a resource guide for people working with disabled care leavers : edition 2

    Get PDF
    • …
    corecore