3,671 research outputs found

    Dietary patterns, insulin sensitivity and inflammation in older adults.

    Get PDF
    Background/objectivesSeveral studies have linked dietary patterns to insulin sensitivity and systemic inflammation, which affect risk of multiple chronic diseases. The purpose of this study was to investigate the dietary patterns of a cohort of older adults, and to examine relationships of dietary patterns with markers of insulin sensitivity and systemic inflammation.Subjects/methodsThe Health, Aging and Body Composition (Health ABC) Study is a prospective cohort study of 3075 older adults. In Health ABC, multiple indicators of glucose metabolism and systemic inflammation were assessed. Food intake was estimated with a modified Block food frequency questionnaire. In this study, dietary patterns of 1751 participants with complete data were derived by cluster analysis.ResultsSix clusters were identified, including a 'healthy foods' cluster, characterized by higher intake of low-fat dairy products, fruit, whole grains, poultry, fish and vegetables. In the main analysis, the 'healthy foods' cluster had significantly lower fasting insulin and homeostasis model assessment of insulin resistance values than the 'breakfast cereal' and 'high-fat dairy products' clusters, and lower fasting glucose than the 'high-fat dairy products' cluster (P≤0.05). No differences were found in 2-h glucose. With respect to inflammation, the 'healthy foods' cluster had lower interleukin-6 than the 'sweets and desserts' and 'high-fat dairy products' clusters, and no differences were seen in C-reactive protein or tumor necrosis factor-α.ConclusionsA dietary pattern high in low-fat dairy products, fruit, whole grains, poultry, fish and vegetables may be associated with greater insulin sensitivity and lower systemic inflammation in older adults

    Stress and visual function in infantile nystagmus syndrome.

    Get PDF
    PURPOSE: Infantile nystagmus syndrome (INS) is an involuntary oscillation of the eyes that has been reported to impair vision and worsen under stress. This investigation aimed to measure visual function in terms of visual acuity (VA) and response time (RT), when INS subjects are placed under stress. METHODS: A total of 23 subjects with INS and 20 control subjects performed a 2-alternative forced choice (2AFC) staircase procedure identifying the gap in a Landolt C, under 4 experimental conditions: initial acclimatization (A); task demand (TD), during which subjects received a small electrical shock for every incorrect answer; anticipatory anxiety (AA), during which subjects received a small shock at random intervals; and relaxed (R). Arousal was monitored with galvanic skin conductance (SkC). In addition to VA and eye movements, RTs were recorded. RESULTS: The SkC was higher in the TD and AA periods and lower during A and R. Shock significantly increased nystagmus amplitude (P < 0.01) and intensity (P < 0.007), and reduced foveation periods (FPs, P < 0.022). In both groups, VA was not reduced, but showed a slight improvement. However, shock increased RT (P < 0.009), and INS subjects were slower than controls (P < 0.0005). CONCLUSIONS: Increased arousal ("stress") provoked more intense nystagmus eye movements. As seen in other studies, stress did not reduce VA despite the shorter FPs. Although VA and FP can correlate across subjects, there would appear to be little correlation, if any, within a subject. However, RTs did increase with stress and shorter FPs, which may have an adverse impact on the visual performance of those with INS

    Geochronology and geochemistry of Mesoproterozoic granitoids in the Lhasa terrane, south Tibet: implications for the early evolution of the Lhasa terrane

    Get PDF
    The early history of the Lhasa terrane remains poorly constrained due to the poor exposure of the Proterozoic rocks. We report here U–Pb zircon ages, geochemical and Hf isotopic data for granite gneisses and biotite gneisses from the Bomi Complex in the eastern part of the Lhasa terrane, south Tibet. Petrological and geochemical data suggest that the protoliths of the granite gneisses and the biotite gneisses could be granites and tonalites, respectively. LA-ICPMS U–Pb zircon analyses yielded ages of 1343 ± 27 Ma (MSWD = 0.3) and 1276 ± 22 Ma (MSWD = 0.4) for two granite gneisses, and a consistent age of ca. 1250 Ma for two biotite gneisses. These ages are interpreted as the magma crystallization time of both the gneisses protoliths, and thus the Bomi Complex represents the oldest rocks found in the Lhasa terrane. Our data indicate that the Mesoproterozoic detrital zircons from the Paleozoic metasedimentary rocks in the Lhasa terrane could be derived from the Lhasa terrane itself or the Tethyan Himalaya, rather than necessarily from the Albany-Fraser belt in the Australia. Geochemical characteristics show that the granite gneisses have an aluminous A-type granite affinity. The two granite gneisses dated in this study have zircon εHf(t) values between +4.0 and +1.8 and between +2.6 and +0.2, respectively. They have identical twostage Hf model ages of ~2.0 Ga. We suggest that the protoliths of the granite gneisses were produced by protracted high temperature partial melting of a felsic intracrustal source in an extensional setting. In contrast, the biotite gneisses have similar geochemical characteristics to those of calc-alkaline granitoids that probably formed in a subduction-related environment. Zircons from the two dated biotite gneisses have relatively higher εHf(t) values of +8.1 to +3.6 and +10.5 to +5.7, respectively, indicating a juvenile mantle contribution to their magma source. Earlier magmatism at ~1343–1276 Ma may formed in a continental rift setting related to the final breakup of supercontinent Columbia, while subsequent magmatism of ~1250 Ma resulted from subduction of ocean slab during the assemblage of Rodinia. We thus infer that the Bomi Complex was related to the contact zone between the Eastern Ghats Belt and .the Archean cratons in southeastern India during the Mesoproterozoi

    An automated segmentation approach to calibrating infantile nystagmus waveforms

    Get PDF
    Infantile nystagmus (IN) describes a regular, repetitive movement of the eyes. A characteristic feature of each cycle of the IN eye movement waveform is a period in which the eyes are moving at minimal velocity. This so-called “foveation” period has long been considered the basis for the best vision in individuals with IN. In recent years, the technology for measuring eye movements has improved considerably, but there remains the challenge of calibrating the direction of gaze in tracking systems when the eyes are continuously moving. Identifying portions of the nystagmus waveform suitable for calibration typically involves time-consuming manual selection of the foveation periods from the eye trace. Without an accurate calibration, the exact parameters of the waveform cannot be determined. In this study, we present an automated method for segmenting IN waveforms with the purpose of determining the foveation positions to be used for calibration of an eye tracker. On average, the “point of regard” was found to be within 0.21° of that determined by hand-marking by an expert observer. This method enables rapid clinical quantification of waveforms and the possibility of gaze-contingent research paradigms being performed with this patient group

    Advantages and disadvantages of an objective selection process for early intervention in employees at risk for sickness absence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is unclear if objective selection of employees, for an intervention to prevent sickness absence, is more effective than subjective 'personal enlistment'. We hypothesize that objectively selected employees are 'at risk' for sickness absence and eligible to participate in the intervention program.</p> <p>Methods</p> <p>The dispatch of 8603 screening instruments forms the starting point of the objective selection process. Different stages of this process, throughout which employees either dropped out or were excluded, were described and compared with the subjective selection process. Characteristics of ineligible and ultimately selected employees, for a randomized trial, were described and quantified using sickness absence data.</p> <p>Results</p> <p>Overall response rate on the screening instrument was 42.0%. Response bias was found for the parameters sex and age, but not for sickness absence. Sickness absence was higher in the 'at risk' (N = 212) group (42%) compared to the 'not at risk' (N = 2503) group (25%) (OR 2.17 CI 1.63–2.89; p = 0.000). The selection process ended with the successful inclusion of 151 eligible, i.e. 2% of the approached employees in the trial.</p> <p>Conclusion</p> <p>The study shows that objective selection of employees for early intervention is effective. Despite methodological and practical problems, selected employees are actually those at risk for sickness absence, who will probably benefit more from the intervention program than others.</p

    Gamma-rays from millisecond pulsars in Globular Clusters

    Full text link
    Globular clusters (GCs) with their ages of the order of several billion years contain many final products of evolution of stars such as: neutron stars, white dwarfs and probably also black holes. These compact objects can be at present responsible for the acceleration of particles to relativistic energies. Therefore, gamma-ray emission is expected from GCs as a result of radiation processes occurring either in the inner magnetosperes of millisecond pulsars or in the vicinity of accreting neutron stars and white dwarfs or as a result of interaction of particles leaving the compact objects with the strong radiation field within the GC. Recently, GeV gamma-ray emission has been detected from several GCs by the new satellite observatory Fermi. Also Cherenkov telescopes reported interesting upper limits at the TeV energies which start to constrain the content of GCs. We review the results of these gamma-ray observations in the context of recent scenarios for their origin.Comment: 20 pages, 9 figures, will be published in Astrophysics and Space Science Series (Springer), eds. N. Rea and D.F. Torre

    Geo-environmental mapping using physiographic analysis: constraints on the evaluation of land instability and groundwater pollution hazards in the Metropolitan District of Campinas, Brazil

    No full text
    Geo-environmental terrain assessments and territorial zoning are useful tools for the formulation and implementation of environmental management instruments (including policy-making, planning, and enforcement of statutory regulations). They usually involve a set of procedures and techniques for delimitation, characterisation and classification of terrain units. However, terrain assessments and zoning exercises are often costly and time-consuming, particularly when encompassing large areas, which in many cases prevent local agencies in developing countries from properly benefiting from such assessments. In the present paper, a low-cost technique based on the analysis of texture of satellite imagery was used for delimitation of terrain units. The delimited units were further analysed in two test areas situated in Southeast Brazil to provide estimates of land instability and the vulnerability of groundwater to pollution hazards. The implementation incorporated procedures for inferring the influences and potential implications of tectonic fractures and other discontinuities on ground behaviour and local groundwater flow. Terrain attributes such as degree of fracturing, bedrock lithology and weathered materials were explored as indicators of ground properties. The paper also discusses constraints on- and limitations of- the approaches taken

    Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment.

    Get PDF
    The primary purpose of this study was to investigate the effects of cognitive loading on movement kinematics and trajectory formation during goal-directed walking in a virtual reality (VR) environment. The secondary objective was to measure how participants corrected their trajectories for perturbed feedback and how participants' awareness of such perturbations changed under cognitive loading. We asked 14 healthy young adults to walk towards four different target locations in a VR environment while their movements were tracked and played back in real-time on a large projection screen. In 75% of all trials we introduced angular deviations of ±5° to ±30° between the veridical walking trajectory and the visual feedback. Participants performed a second experimental block under cognitive load (serial-7 subtraction, counter-balanced across participants). We measured walking kinematics (joint-angles, velocity profiles) and motor performance (end-point-compensation, trajectory-deviations). Motor awareness was determined by asking participants to rate the veracity of the feedback after every trial. In-line with previous findings in natural settings, participants displayed stereotypical walking trajectories in a VR environment. Our results extend these findings as they demonstrate that taxing cognitive resources did not affect trajectory formation and deviations although it interfered with the participants' movement kinematics, in particular walking velocity. Additionally, we report that motor awareness was selectively impaired by the secondary task in trials with high perceptual uncertainty. Compared with data on eye and arm movements our findings lend support to the hypothesis that the central nervous system (CNS) uses common mechanisms to govern goal-directed movements, including locomotion. We discuss our results with respect to the use of VR methods in gait control and rehabilitation

    A quantum spin transducer based on nano electro-mechancial resonator arrays

    Full text link
    Implementation of quantum information processing faces the contradicting requirements of combining excellent isolation to avoid decoherence with the ability to control coherent interactions in a many-body quantum system. For example, spin degrees of freedom of electrons and nuclei provide a good quantum memory due to their weak magnetic interactions with the environment. However, for the same reason it is difficult to achieve controlled entanglement of spins over distances larger than tens of nanometers. Here we propose a universal realization of a quantum data bus for electronic spin qubits where spins are coupled to the motion of magnetized mechanical resonators via magnetic field gradients. Provided that the mechanical system is charged, the magnetic moments associated with spin qubits can be effectively amplified to enable a coherent spin-spin coupling over long distances via Coulomb forces. Our approach is applicable to a wide class of electronic spin qubits which can be localized near the magnetized tips and can be used for the implementation of hybrid quantum computing architectures
    corecore