1,217 research outputs found

    The Future Flight Deck: Modelling Dual, Single and Distributed Crewing Options

    Get PDF
    It is argued that the barrier to single pilot operation is not the technology, but the failure to consider the whole socio-technical system. To better understand the socio-technical system we model alternative single pilot operations using Cognitive Work Analysis (CWA) and analyse those models using Social Network Analysis (SNA). Four potential models of single pilot operations were compared to existing two pilot operations. Using SOCA-CAT from CWA, we were able to identify the potential functional loading and interactions between networks of agents. The interactions formed the basis on the SNA. These analyses potentially form the basis for distributed system architecture for the operation of a future aircraft. The findings from the models suggest that distributed crewing option could be at least as resilient, in network architecture terms, as the current dual crewing operations

    Spot the difference: Operational event sequence diagrams as a formal method for work allocation in the development of single-pilot operations for commercial aircraft

    Get PDF
    Function Allocation methods are important for the appropriate allocation of tasks between humans and automated systems. It is proposed that Operational Event Sequence Diagrams (OESDs) provide a simple yet rigorous basis upon which allocation of work can be assessed. This is illustrated with respect to a design concept for a passenger aircraft flown by just a single pilot where the objective is to replace or supplement functions normally undertaken by the second pilot with advanced automation. A scenario-based analysis (take off) was used in which there would normally be considerable demands and interactions with the second pilot. The OESD analyses indicate those tasks that would be suitable for allocation to automated assistance on the flight deck and those tasks that are now redundant in this new configuration (something that other formal Function Allocation approaches cannot identify). Furthermore, OESDs are demonstrated to be an easy to apply and flexible approach to the allocation of function in prospective systems.Practitioner Summary: OESDs provide a simple yet rigorous basis upon which allocation of work can be assessed. The technique can deal with the flexible, dynamic allocation of work and the deletion of functions no longer required. This is illustrated using a novel design concept for a single-crew commercial aircraf

    A Racial Impact Analysis of HB 1075/SB 201

    Get PDF
    The economic and social consequences of untreated (or under-treated) substance abuse among minors are significant. This report provides a racial impact analysis of HB 1075/SB 201, legislation approved in the 2012 General Assembly session that seeks to improve access and use of substance and alcohol services by minors. In short, this policy could go a long way to ensure that families are properly educated about these life-changing (and life-saving) programs; however our analysis raises concerns related to cultural competency that may serve to undermine the legislation’s goal. Virginia is incredibly diverse and its communities vary widely with its assets and risks. In this vein, we offer concrete recommendations to maximize the policy’s racial equity. Our analysis also sheds light on the ongoing challenge Virginia’s state agencies have had to address cultural competency within its services. Additional research is necessary to determine what service gaps may exist, which would increase or decrease the racial equity impact. By answering these questions, Virginia will be better prepared to further reduce alcohol and substance abuse by all minors

    On object orientation as a paradigm for general purpose distributed operating systems

    Get PDF

    Techniques for handling scale and distribution in virtual worlds

    Get PDF

    Risk homeostasis theory - A study of intrinsic compensation

    Get PDF
    Risk homeostasis theory (RHT) suggests that changes made to the intrinsic risk of environments are negated in one of three ways: behavioural adjustments within the environment, mode migration, and avoidance of the physical risk. To date, this three-way model of RHT has little empirical support, whilst research findings on RHT have at times been diametrically opposed. A reconciliation of apparently opposing findings might be possible by suggesting that extrinsic compensation fails to restore previously existing levels of actual risk in cases where behavioural adjustments within the environment are incapable of negating intrinsic risk changes. This paper reports a study in which behavioural adjustments within the physical risk-taking environment are capable of reconciling target with actual risk. The results provide positive support for RHT in the form of overcompensation for the intrinsic risk change on specific driver behaviours

    No imminent quantum supremacy by boson sampling

    Get PDF
    It is predicted that quantum computers will dramatically outperform their conventional counterparts. However, large-scale universal quantum computers are yet to be built. Boson sampling is a rudimentary quantum algorithm tailored to the platform of photons in linear optics, which has sparked interest as a rapid way to demonstrate this quantum supremacy. Photon statistics are governed by intractable matrix functions known as permanents, which suggests that sampling from the distribution obtained by injecting photons into a linear-optical network could be solved more quickly by a photonic experiment than by a classical computer. The contrast between the apparently awesome challenge faced by any classical sampling algorithm and the apparently near-term experimental resources required for a large boson sampling experiment has raised expectations that quantum supremacy by boson sampling is on the horizon. Here we present classical boson sampling algorithms and theoretical analyses of prospects for scaling boson sampling experiments, showing that near-term quantum supremacy via boson sampling is unlikely. While the largest boson sampling experiments reported so far are with 5 photons, our classical algorithm, based on Metropolised independence sampling (MIS), allowed the boson sampling problem to be solved for 30 photons with standard computing hardware. We argue that the impact of experimental photon losses means that demonstrating quantum supremacy by boson sampling would require a step change in technology.Comment: 25 pages, 9 figures. Comments welcom
    corecore