
Techniques for Handling Scale and Distribution in Virtual WorldsKarl O'Connell, Tom Dinneen, Steven Collins,Brendan Tangney, Neville Harris and Vinny Cahill�,Distributed Systems Groupyand Image Synthesis GroupzDepartment of Computer ScienceTrinity College DublinIrelandAbstractLack of bandwidth and network latency are known to be major impediments to achieving realism in distributedvirtual world (vw) applications with a large number of, potentially geographically dispersed, entities. This paperdescribes a combination of techniques that we are using to overcome these twin problems. The techniques describedare intended to reduce both the volume and frequency of communication between the entities that make up thevirtual world and include the use of anonymous event-based communication with notify constraints, scoping ofevent propagation with zones, and use of predictive approaches to replica management. Each of these techniquesis described in turn.1 IntroductionLack of bandwidth and network latency are known to be major impediments to achieving realism in distributedvirtual world (vw) applications with a large number of, potentially geographically dispersed, entities. This paperdescribes a combination of techniques that we are using to overcome these twin problems. The work is being donewithin the context of a wider project known as Moonlight1, within which we are designing and implementing atoolkit, known as void [9], for the development of distributed vw applications such as interactive simulations andadvanced video games.Central to void is a distributed object model, known as eco, in which objects, or entities, communicate witheach other using an anonymous event based paradigm. void also provides a class hierarchy that includes classes forgraphics and the main types of entity, e.g. ones which can move, handle collisions, are animated etc., that populatethe vw. Entitys classes are derived from this class hierarchy.In order to scale well the amount of network tra�c generated by entities must be reduced and the impact of networklatency minimised. In the eco object model events are only delivered to entities that have subscribed interest in themand additional techniques are utilised to further minimise the amount of tra�c generated. In particular: replicationof entities and dead reckoning are used to allow the behaviour of a remote entity to be simulated locally with aminimum amount of remote communication; subscription to events can be parameterised (using notify constraints) sothat entities need only be noti�ed of selected occurrences of a particular type of event; entities can also be organisedinto zones with the potential propagation of events restricted to entities within a zone.The remainder of this paper elaborates upon the eco model before going on to describe in turn the details of eachof the techniques just mentioned. The current implementation of void is discussed and the paper concludes with acomparison of our approach with related work in the area.2 The ECO Modelvoid supports the use of object-oriented (oo) techniques for the design and development of vws. The void objectmodel, known as eco [11], combines three key concepts: objects representing entities, events providing the meansfor entities to interact and constraints which allow the speci�cation of synchronisation, real-time, and noti�cationrequirements.eco objects, which are instance of classes, communicate using an event abstraction. An event represents a changeto the state of the system and is a form of anonymous communication in that the object (or entity) raising the eventdoes not know, or care, which other objects have subscribed an interest in the event. Each event has a name and zero�email: Vinny.Cahill@dsg.cs.tcd.ieyhttp://www.dsg.cs.tcd.ie/zhttp://vangogh.cs.tcd.ie/1The Moonlight project is partially supported by the Commission of the European Union under contract number 8676.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/207235524?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

class Entity

{

 protected:

 //...

 public:

 virtual void Subscribe (EventType,

 EventHandler

 NotifyConstraint,

 PreConstraint,

 PostConstraint);

 virtual void UnSubscribe (EventType,

 EventHandler);

 virtual void Raise (EventType);

 //...

}; Figure 1: The Entity Classor more parameters. The parameters of an event are typed. For the speci�c occurrence of an event the parameters areinstantiated with values. These values, together with the event name, describe the state change that has occurred.An object can inform other objects about a state change, and it can react if it is informed of some state changeby other objects. The former is accomplished by announcing an event, and the latter by binding a method of theobject to the required event. This binding can be static (at object creation time) or dynamic. The same method canbe bound to several events, and the same event can have several methods (of the same or of di�erent objects) boundto it. A binding can be established only if the signatures of the event and of the method match (if they have thesame number of parameters, and the types of the corresponding parameters are the same).eco events are a richer abstraction than those of SimNet [5] and such systems. They are a language level conceptand the eco model supports constraints which are named conditions that control the propagation and handling ofevents. Figure 1 shows the basic event API.The motivation for constraints is threefold. Firstly, synchronisation constraints provide a mechanism for associat-ing synchronisation policies with a class. Secondly, real-time constraints provide a mechanism for associating variousreal-time requirements with a class and lastly notify constraints provide a means of restricting the propagation ofevents to objects which are speci�cally interested in particular occurrences of those events, thus enabling a moree�cient implementation of event-handling.Notify constraints are described in more detail below as are zones and dead reckoning which are the other mainfeatures of void which help the event abstraction to scale well.3 Notify ConstraintsThe aim of notify constraints is to ensure that event handlers are only called when the entity to which they belongis de�nitely interested in the speci�c event in question.For example in a distributed game a very common event would be collision whose parameters might includethe identities of the entities that collided and to which many entities are likely to be subscribed. While the scorekeeping entity might be interested in all collisions, most other entities will only be interested in collisions involvingthemselves. The entity will only be noti�ed when one of the parameters equals their own identi�cation number.Without notify constraints each collision event would be handled by every subscribed entity, each of which wouldhave to internally check whether the collision concerned it or not. The constraint system allows propagation of eventsonly to those entities which want to receive them. Figure 2 illustrates how an entity would subscribe to collisionevents using notify constraints.To support the distributed case, and to avoid the unnecessary transmission of event noti�cations, notify constraintsmay only refer to parameters of the event and never to the local state of an entity. As the constraint is independentof the actual state of the subscribing entity then it can be evaluated at the raising side and if found to be false thenthe event need never be propagated to that entity.

E1.Subscribe (CollisionEvent,

 EventHandler (Event),

 anEntity.ID == (CollisionEvent.EntityID1 || Collision.EntityID2),

 0, // No preconstraint

 0); // No postconstraintFigure 2: Notify Constraints
class Entity

{

 protected:

 // ...

 public:

 // ...

 virtual void CreateZone (Zone newZone);

 virtual void JoinZone (Zone newZone);

 virtual void ChangeZone (Zone newZone,

 Zone oldZone);

 virtual void LeaveZone (Zone zone);

 virtual void Raise (EventType,

 Zone zone, ...);

 // The Zone parameter in the Raise function is optional and is

 // used only when targeting events at a particular zone.

}; Figure 3: Zone API4 Scoping EventsNotify constraints are however only one way in which event propagations may be minimized. Events in eco may alsobe scoped. Scoping ensures that objects do not receive noti�cation of events, even with matching notify constraints,unless they are in the same scope as the object raising the event. In a typical distributed `room based' game, forexample, an entity may only be interested in events that are raised by other entities within same room.In the eco scoping model, objects are organised into zones [8], where a zone is simply a collection of relatedobjects and events are only visible within the zone of the object raising the event. Objects are organised into zones atthe discretion of the application programmer based on functionality, geographical location within the vw or physicallocation on the network. Communication is still anonymous as the object raising the event need not know whichobjects are members of the zone.Partitioning vws into virtual computer spaces within which people and vw entities interact, either with eachother or with the various tools they �nd there, is a common technique employed by many cscw systems (e.g Jupiter[3, 7]) and virtual environments (e.g. DIVE [2] and NPSNET IV [6]). Zones are a mechanism that facilitates theapplication developer in implementing whatever form of these spaces is required through extra features supportedby the eco language. Figure 3 outlines the C++ interface for zone management while in �gure 4 a small programextract is given which illustrates how an eco Entity object of type VW Entity uses this interface.Zone MembershipObjects may change zones dynamically and zones in eco may also overlap allowing an object to be a member of twoor more zones. This is useful for example in applications where an object may be a member of both a geographical andfunctional zone simultaneously. Consider the scenario in which objects o1 , o2 , o3 , o4 and o5 in �gure 5 are entitieswhich are related geographically within the vw for example because they are all located in a research laboratory

class VW_Entity : public Entity

{

 //...

 public:

 //...

 VW_Entity (...);

 virtual void Navigate ();

 //...

};

VW_Entity (...) // constructor function

{

 JoinZone (zoneA, zoneB);

 // other initialisations

}

void VW_Entity::Navigate ()

{

 if (Bdry_collision == TURE)

 changeZone (oldzone, newzone);

 else

 changePosition (...);

} Figure 4: An example program using zones
o1

o2

o3

o4

o5
06

o7

zone A zone B

and receive events raised by entities which belong to either of these zones
Objects o4 and o5 are members of both zone A and zone BFigure 5: Overlapping Zones(zone A) within a university, while objects o4 , o5 , o6 and o7 have some functional relationship (represented byzone B), say through their role within the university (e.g. researchers in the computer science department). In thisscenario objects o4 and o5 are members of both zone A and zone B and will receive event noti�cations raised byobjects in both zones. Events raised by the objects o4 and o5 will be propagated to both zone A and zone B.NestingZones may be nested, allowing large zones containing many objects to be subdivided. In �gure 6, zone A may beconsidered, for example, as a virtual computer science building with zone B representing the research lab. In thisscenario events raised by an object in the research lab (e.g. o1) will be propagated to only those objects in its zone.Whereas an object raising an event in the outer enclosing zone (e.g. o5) will be propagated to all the objects in bothzone A and zone B.

zone A

zone B

o1

o2

o3

o4

o5

Events raised by object o5 are propogated to zone A and all its
sub−zones (zone B). Events raised by object o1, however, are scoped
to zone B Figure 6: Nested ZonesTargeting ZonesFinally the scope of an event may optionally be targeted at a particular zone of which the object raising the eventis not a member. This may be useful in situations where an entity (e.g. o5 in �gure 7) is in a di�erent building,say the admissions o�ce in the university example (zone A) and may wish to send events to the computer sciencedepartment (zone D) notifying all the entities within that building of some change in admission procedures.5 The VOID Class Hierarchy and Dead ReckoningThis section briey outlines the void class hierarchy and the dead reckoning protocol used to reduce the number ofevents that have to be sent accross the network.5.1 The VOID Class HierarchyThe void toolkit provides a class hierarchy for building vws. The class hierarchy provides common functionalityfound in other vw toolkits, such as articulated �qures, animation, collision detection and newtonian physics. Thishierarchy provides the user with an infrastructure for a basic model of an autonomous entity. This entity can betailored to suit particular requirements and as such the hierarchy is designed so that the application developer mayextend the Entities functionality with facilities required by the application.Figure 8 shows the general structure0 of the void class hierarchy. The main void classes are outlined below,� Animation - provides functionality for mapping KeyFramed channels onto an Entity's node hierarchy.� Collision Detection - provides support for receiving and handling Collision Events.

zone A

zone B

zone C zone D

o1

o2

o3

o4

o5

o6

o7

o8

o9

o10

o11

o12

Object o5 targets an event to zone D explicitlyFigure 7: Scoping events explicitly

Environment_Manager

Simple_Entity

Collidable_Entity Animatable_Entity

Trackable_Entity Newtonian_Entity

Collision_Manager

Node

Wall Robot

Entity

Moveable_Entity

Display_Manager

Frame Node

Gul Object

Figure 8: The VOID Class Hierarchy� Moveable - this class provides a simulation core using integrator and derivative classes for updating an Entity'sstate to the next time step. A Moveable Entity can either represent a Particle (Position and Velocity) or aRigid Body (Position, Momentum, Orientation and Angular Momentum).� Newtonian - An Entities node hierarchy can be acted on by gravity and spring forces. With the addition ofa newtonian class within a Physically-based simulator, to provide a means of enhancing the feeling imersionwithin the vw.� Trackable - The Trackable Class provides the user with a predictor corrector model based on the track classwhich is described below. By simply deriving from this class instead of from the Moveable Entity class allupdates are tracked and events are only sent when the actual local behaviour di�ers from the tracked versionby a threshold amount.The above classes are derived from a common base class Simple Entity, which provides the basic functionalityof the object node hierarhcy.The Envionment Manager is responsible for managing a number of Entities. In �gure 8 a Wall is derived fromCollidable Entity, while the Robot is derived from Collidable, Animatable and Trackable Entity. The behaviourof an entity derived from an Animatable Entity or a Newtonian Entity is de�ned by an ascii �le read in at runtime.5.2 Dead ReckoningThe Display Manager is the component of void that is responsible for visualising the environment. It has to ensurethat a given object appears in the same position at a given time to all users who can perceive it, regardless of thedisplay frame rate of their machine and delays caused by the communication system. To ensure a realistic lookingsimulation and to cater for scalability the amount of communication between Entities and the display manager mustbe minimised. To achieve this a form of dead reckoning, similar to that outlined in [10], is used. Entities and theDisplay Manager both execute a function which will predict the future behaviour of the Entity. Updates are onlysent from the Entity when the actual local behaviour di�ers from the predicted version by a threshold amount.

In void any time dependent behaviour can be predicted and corrected. The manner in which this is doneis outlined in detail below for the case of movement but the same approach is also used to minimise the amount oftra�c generated by the animation of entities (a crucial aspect for realistic games).The Display Manager predicts future updates from Entities based on several previous updates which it usesto build up a track history of the Entity, it then uses this track history and curve �tting along with numericalextrapolation techniques to display the object at the local frame rate. The Entity maintains its true position alongwith the predicted path and it is only when the di�erence between them skews beyond a certain threshold that itraises an Update Event. All Display Managers subscribed to this event receive the new position update and re-�ttheir predicted path accordingly.Further savings on network bandwidth may be made by sending only the positional and orientational updatesinstead of extra derivatives such as velocity and acceleration which can be calculated locally by the Display Manager.Only sending the position and orientation updates better approximates the behaviour of the object if updates arereceived too late as positions cannot change signi�cantly until the velocity and acceleration have changed for sometime.2To ensure a realistic visualisation it is necessary to avoid `jumping' when an update is sent to the Display Manger.An extra convergence step is introduced that smoothly converges with the tracked position at the Convergence Point.This step provides a seamless view of remote objects. This convergence path can then be extrapolated at the localframe rate.6 Related WorkLike void, SimNet and DIS [5] also use predictive methods and dead reckoning to reduce communication betweenentities within the vw. However both of these systems have problems when scaled due to their homogeneous worlddatabases, where all object state changes must be communicated among all users of the environment. The NPSNETIV [6] project has attempted to overcome this problem by introducing the concept of areas of interest (AOI), wherebyonly vw entities within a particular AOI would communicate and receive messages from each other. An IP Multicastaddress may then be assigned to the AOI. NPSNET IV, however, is based on the use of the DIS network protocolwhich is targeted primarily at the development of large scale military applications.The DIVE [2] (Distributed Interactive Virtual Environment) system is a toolkit for building distributed interactivevirtual reality applications in a heterogeneous network environment. DIVE allows a number of users and applicationsto share a virtual environment, where they can interact and communicate in real time. The run-time environmentconsists of a set of communicating processes, running on nodes distributed within a local area network (LAN) orwide area network (WAN). These processes can represent either human users or autonomous applications and haveaccess to a number of databases which they update concurrently. Each database contains a number of abstracteddescriptions of graphical objects that make up the vw. Multicast protocols are used for the communication withinsuch a process group. A process may enter and leave groups dynamically, but at a given time will be a member ofonly one process group. A disadvantage with this approach however, is that it is di�cult to scale because of thecommunication costs while maintaining reliability and consistent data.MASSIVE [1, 4] (Model, Architecture, and System for Spatial Interaction in Virtual Environments) supportsmultiple vws where each world may be inhabited by many concurrent users who can interact over ad hoc combinationsof graphics, audio and text interfaces. In contrast to distributed vw systems based on a shared database approach,the processing model used in MASSIVE is of independent computational processes communicating over typed peer-to-peer connections (running over standard Internet transport protocols). Each world de�nes a disjoint and in�nitelylarge virtual space which may be inhabited by many concurrent users. Portals allow users to jump from one worldto another. Interaction between users is based on a spatial model, where users interact with each other providedthey are within each other's aura. Auras are governed by spatial factors typically an object's relative position andorientation. Communication, however, is limited to point-to-point connections.7 ImplementationThe void graphics libraries and display manager, which together support the predictor corrector system, are im-plemented as C++ class libraries layered above both the gul3 and openGL rendering packages. Currently a C++distributed version of eco is implemented with zones and constraints. This implementation essentially maps zonesonto IP multicast groups and will support event type de�nitions written in C++ with pre-processor support to beprovided for stub generation in order to handle event marshalling. Planned future work will investigate optimisationtechniques for local event dispatching perhaps based on dynamic code generation techniques as used in the eventdispatching mechanism of the Spin micro-kernel. We also intend developing several vw applications to illustrate thescalability and exibility of the toolkit.2Position changes are thus delayed reactions to forces, they are less sensitive to sporadic changes.3A graphics library developed within Moonlight.

8 Summary and ConclusionsThis paper presented a brief overview of a number of techniques which we are currently developing in order tosupport scalable distributed vws. Our approach is based around an object model which uses anonymous event basedcommunication along with notify constraints, zones and dead reckoning to ensure e�ective event propogation.AcknowledgementsThe authors would like to acknowledge the very many helpful contributions of our partners in the Moonlight consor-tium.References[1] Steve Benford, John Bowers, Lennart Fahlen, Chris Greenhalg, John Mariani, and Tom Rodden. NetworkedVirtual realitty and Cooperative Work. Presence, 4(4):364{386, 1995.[2] Carlson C. and Hagsand O. DIVE: A Platform For Multi-User Virtual Environments. Computer And Graphics,17(6):663{669, 1993.[3] Pavel Curtis, Michael Dixon, Ron Frederick, and David A Nichols. The Jupiter Audio/Video Architecture:Secure Multimedia in Network Places. In ACM Multimedia Conference, 1995.[4] Chris Greenhalgh and Steve Benford. MASSIVE: a Distributed Virtual Reality System Incorporating SpatialTrading. In 15th International Conference on Distributed Computing Systems (DCS'95), Vancouver, Canada,May 30-June 2 1995. IEEE Computer Society Press.[5] Locke J. An Intrduction to the Internet Networking Environment and SIMNET/DIS. Technical report, ComputerScience Department, Naval Postgraduate School, August 1993.[6] Macedonia, Michael R., Zyda, Michael J., Pratt, David R., Brutzman, Donald P. and Barham, Paul T. ExploitingReality with Multicast Groups: A Network Architecture for Large Scale Virtual Environments. In the Proceedingsof the 1995 IEEE Virtual Reality Annual Symposium, North Carolina., 1995.[7] David A Nichols, Pavel Curtis, Michael Dixon, and John Lamping. High-Latency, Low-Bandwidth Windowingin the Jupiter Collaboration System. In User Interface Systems and Technology (UIST'95), 1995.[8] Karl O'Connell and Vinny Cahill. System Support for Scalable Distributed Virtual Worlds. In Proceedings ofthe ACM Symposium on Virtual Reality Software and Technology. ACM, July 1996.[9] Karl O'Connell, Vinny Cahill, Andrew Condon, Stephen McGerty, Gradimir Starovic, and Brendan Tangney.The VOID shell: A toolkit for the development of distributed video games and virtual worlds. In Proceedings ofthe Workshop on Simulation and Interaction in Virtual Environments, 1995. Also technical report TCD-CS-95-27, Dept. of Computer Science, Trinity College Dublin.[10] S.K. Singhal and D.R. Cheriton. Using a Position History-Based rotocol for Distributed Object Visualization.Technical Report STAN-CS-TR-94-1505, Stanford University, 1994.[11] Gradimir Starovic, Vinny Cahill, and Brendan Tangney. An event based object model for distributed program-ming. In OOIS (Object-Oriented Information Systems) '95, pages 72{86, London, December 1995. Springer-Verlag. Also technical report TCD-CS-95-28, Dept. of Computer Science, Trinity College Dublin.

