138 research outputs found

    Influence of the physical environment and conspecific aggression on the spatial arrangement of breeding grey seals

    Get PDF
    Understanding the habitat requirements of a species for breeding is essential for its conservation, particularly if the availability of suitable habitat is a limiting factor for population growth. This is postulated to be the case for grey seals, one of the more abundant marine apex predators in northern European waters. In common with similar studies that have investigated the habitat preferences of breeding grey seals, we use abiotic (topographical, climatological) attributes but, unlike previous work, we also incorporate behavioural variables, particularly the occurrence of aggressive interactions between females and the presence of neighbouring seals. We used two Generalized Additive Models (GAM) in a sequential and iterative fashion. The first model links the occurrence of aggression at particular points in the colony to local topography derived from a Geographical Information System (GIS), presence of neighbouring seal pups and the day of the breeding season. The output of this GAM is used as one of the explanatory variables in a GAM of daily variation in the spatial distribution of births. Although proximity of a birth site to a water source and the presence of neighbouring seal pups both had significant influences on the distribution of newborn pups over time and space, at the scale of the study site it was found that simple rules could predict pup distribution more efficiently than a complex individual-based simulation model. (c) 2007 Elsevier B.V. All rights reserved.PostprintPeer reviewe

    Assessing the role of sampling uncertainty when predicting behavioral responses of tagged cetaceans exposed to naval sonar

    Get PDF
    Funding: This work was financially supported by the US Navy Living Marine Resources Program (LMR) Contract No. N3943018C2080. Support for the Atlantic BRS project was provided by the Naval Facilities Engineering Command Atlantic under Contract No. N62470-15-D-8006, Task Order 18F4036, Issued to HDR, Inc.Concerns over cetacean mortality events coincident with maritime warfare exercises have motivated efforts to characterise the effects of anthropogenic noise on free-ranging whales and dolphins. By monitoring the movement, diving, and acoustic behaviours of individual whales before, during, and after sound exposure, behavioural response studies (BRSs) have supported significant progress in our understanding of the sensitivity of various cetacean species to high-powered naval sonar signals. However, differences in the designs and sampling capabilities of animal-borne tags typically used in BRS experiments prompt questions about the influence of data resolution in quantitative assessments of noise impacts. We conducted simulations to examine how uncertainty in the acoustic dose either measured on high-resolution multi-sensor biologging tags or modelled from position-transmitting satellite telemetry tags may affect predictions of behavioural responses in Cuvier’s beaked whales (Ziphius cavirostris) exposed to low- and mid-frequency active sonar. We considered an array of scenarios representative of real-world BRSs and used posterior estimates of dose-response functions obtained under an established Bayesian hierarchical modelling framework to explore the consequences of different tag choices for management decision-making. Our results indicate that (1) the zone of impact from a sonar source is under-estimated in most test conditions, (2) substantial reductions in the uncertainty surrounding dose-response relationships are possible at higher sample sizes, and (3) this largely holds true irrespective of tag choice under the scenarios considered, unless positional fixes from satellite tags are consistently poor. Strategic monitoring approaches that combine both archival biologging and satellite biotelemetry are essential for characterising complex patterns of behavioural change in cetaceans exposed to increasing levels of acoustic disturbance. We suggest ways in which BRS protocols can be optimised to curtail the effects of uncertainty.Publisher PDFPeer reviewe

    Simulating cetacean responses to sonar exposure within a Bayesian hierarchical modelling framework : technical report

    Get PDF
    Funding: The research reported here was financially supported by the US Navy Living Marine Resources Programme (LMR) Contract No. N3943018C2080.In this report, we present a framework for simulating responses of cetaceans to various military sonar exposure contexts using Bayesian hierarchical modelling. This work was motivated by the need to assess the utility of different types of animal-attached biotelemetry tags in improving our understanding of dose–response relationships. Specifically, we used a Monte Carlo approach to conduct a sensitivity analysis of the effects of uncertainty in acoustic dose measurements (i.e. received sound levels) on the probability of behavioural response. Accompanying R code is available and fully described in a sister document.Publisher PD

    Global coverage of cetacean line-transect surveys : status quo, data gaps and future challenges

    Get PDF
    Knowledge of abundance, trends and distribution of cetacean populations is needed to inform marine conservation efforts, ecosystem models and spatial planning. We compiled a geo-spatial database of published data on cetacean abundance from dedicated visual line-transect surveys and encoded >1100 abundance estimates for 47 species from 430 surveys conducted worldwide from 1975-2005. Our subsequent analyses revealed large spatial, temporal and taxonomic variability and gaps in survey coverage. With the exception of Antarctic waters, survey coverage was biased toward the northern hemisphere, especially US and northern European waters. Overall, <25% of the world’s ocean surface was surveyed and only 6% had been covered frequently enough (≥ 5 times) to allow trend estimation. Almost half the global survey effort, defined as total area (km2) covered by all survey study areas across time, was concentrated in the Eastern Tropical Pacific (ETP). Neither the number of surveys conducted nor the survey effort had increased in recent years. Across species, an average of 10% of a species’ predicted range had been covered by at least one survey, but there was considerable variation among species. With the exception of three delphinid species, <1% of all species’ ranges had been covered frequently enough for trend analysis. We use a data-rich species, sperm whale, as an example to illustrate the challenges of using available data from line-transect surveys for the detection of trends or for spatial planning. Finally, we propose and contrast several field and analytical methods to fill in data gaps to improve future cetacean conservation management efforts.Publisher PDFPeer reviewe

    Continuous-time modelling of behavioural responses in animal movement

    Get PDF
    Funding: TM, RG, CH, and LT were funded by the US office of Naval Research, Grant N000141812807. This work was supported by the US Fleet Forces Command through the Naval Facilities Engineering Command Atlantic under Contract No. N62470-15-D-8006, Task Order 50, Issued to HDR, Inc.There is great interest in ecology to understand how wild animals are affected by anthropogenic disturbances, such as sounds. For example, behavioural response studies are an important approach to quantify the impact of naval activity on marine mammals. Controlled exposure experiments are undertaken where the behaviour of animals is quantified before, during, and after exposure to a controlled sound source, often using telemetry tags (e.g., accelerometers, or satellite trackers). Statistical modelling is required to formally compare patterns before and after exposure, to quantify deviations from baseline behaviour. We propose varying-coefficient stochastic differential equations (SDEs) as a flexible framework to model such data, with two components: (1) time-varying baseline dynamics, modelled with non-parametric or random effects of time-varying covariates, and (2) a nonparametric response model, which captures deviations from baseline. SDEs are specified in continuous time, which makes it straightforward to analyse data collected at irregular time intervals, a common situation for animal tracking studies. We describe how the model can be embedded into a state-space modelling framework to account for measurement error. We present inferential methods for model fitting, model checking, and uncertainty quantification (including on the response model). We apply this approach to two behavioural response study data sets on beaked whales: a satellite track, and high-resolution depth data. Our results suggest that the whales’ horizontal movement and vertical diving behaviour changed after exposure to the sound source, and future work should evaluate the severity and possible consequences of these responses. These two very different examples showcase the versatility of varying-coefficient SDEs to measure changes in behaviour, and we discuss implications of disturbances for the whales’ energetic balance.PostprintPeer reviewe

    Dose response severity functions for acoustic disturbance in cetaceans using recurrent event survival analysis

    Get PDF
    This work was financially supported by the U. S. Office of Naval Research grant N00014‐12‐1‐0204, under the project “Multi‐study Ocean acoustics Human effects Analysis” (MOCHA). . L. Tyack received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland) and their support is gratefully acknowledged. MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions. The case study data were provided by the 3S project, which was funded by the U.S. Office of Naval Research, the Norwegian Ministry of Defense, the Netherlands Ministry of Defense, and WWF Norway.Behavioral response studies (BRSs) aim to enhance our understanding of the behavior changes made by animals in response to specific exposure levels of different stimuli, often presented in an increasing dosage. Here, we focus on BRSs that aim to understand behavioral responses of free-ranging whales and dolphins to manmade acoustic signals (although the methods are applicable more generally). One desired outcome of these studies is dose-response functions relevant to different species, signals and contexts. We adapted and applied recurrent event survival analysis (Cox proportional hazard models) to data from the 3S BRS project, where multiple behavioral responses of different severities had been observed per experimental exposure and per individual based upon expert scoring. We included species, signal type, exposure number and behavioral state prior to exposure as potential covariates. The best model included all main effect terms, with the exception of exposure number, as well as two interaction terms. The interactions between signal and behavioral state, and between species and behavioral state highlighted that the sensitivity of animals to different signal types (a 6–7 kHz upsweep sonar signal [MFAS] or a 1–2 kHz upsweep sonar signal [LFAS]) depended on their behavioral state (feeding or nonfeeding), and this differed across species. Of the three species included in this analysis (sperm whale [Physeter macrocephalus], killer whale [Orcinus orca] and long-finned pilot whale [Globicephala melas]), killer whales were consistently the most likely to exhibit behavioral responses to naval sonar exposure. We conclude that recurrent event survival analysis provides an effective framework for fitting dose-response severity functions to data from behavioral response studies. It can provide outputs that can help government and industry to evaluate the potential impacts of anthropogenic sound production in the ocean.Publisher PDFPeer reviewe

    A simulation approach to assessing environmental risk of sound exposure to marine mammals

    Get PDF
    Intense underwater sounds caused by military sonar, seismic surveys, and pile driving can harm acoustically sensitive marine mammals. Many jurisdictions require such activities to undergo marine mammal impact assessments to guide mitigation. However, the ability to assess impacts in a rigorous, quantitative way is hindered by large knowledge gaps concerning hearing ability, sensitivity, and behavioral responses to noise exposure. We describe a simulation-based framework, called SAFESIMM (Statistical Algorithms For Estimating the Sonar Influence on Marine Megafauna), that can be used to calculate the numbers of agents (animals) likely to be affected by intense underwater sounds. We illustrate the simulation framework using two species that are likely to be affected by marine renewable energy developments in UK waters: gray seal (Halichoerus grypus) and harbor porpoise (Phocoena phocoena). We investigate three sources of uncertainty: How sound energy is perceived by agents with differing hearing abilities; how agents move in response to noise (i.e., the strength and directionality of their evasive movements); and the way in which these responses may interact with longer term constraints on agent movement. The estimate of received sound exposure level (SEL) is influenced most strongly by the weighting function used to account for the specie's presumed hearing ability. Strongly directional movement away from the sound source can cause modest reductions (~5 dB) in SEL over the short term (periods of less than 10 days). Beyond 10 days, the way in which agents respond to noise exposure has little or no effect on SEL, unless their movements are constrained by natural boundaries. Most experimental studies of noise impacts have been short-term. However, data are needed on long-term effects because uncertainty about predicted SELs accumulates over time. Synthesis and applications. Simulation frameworks offer a powerful way to explore, understand, and estimate effects of cumulative sound exposure on marine mammals and to quantify associated levels of uncertainty. However, they can often require subjective decisions that have important consequences for management recommendations, and the basis for these decisions must be clearly described.Publisher PDFPeer reviewe

    Immunomodulatory parasites and toll-like receptor-mediated tumour necrosis factor alpha responsiveness in wild mammals

    Get PDF
    BACKGROUND: Immunological analyses of wild populations can increase our understanding of how vertebrate immune systems respond to 'natural' levels of exposure to diverse infections. A major recent advance in immunology has been the recognition of the central role of phylogenetically conserved toll-like receptors in triggering innate immunity and the subsequent recruitment of adaptive response programmes. We studied the cross-sectional associations between individual levels of systemic toll-like receptor-mediated tumour necrosis factor alpha responsiveness and macro- and microparasite infections in a natural wood mouse (Apodemus sylvaticus) population. RESULTS: Amongst a diverse group of macroparasites, only levels of the nematode Heligmosomoides polygyrus and the louse Polyplax serrata were correlated (negatively) with innate immune responsiveness (measured by splenocyte tumour necrosis factor alpha responses to a panel of toll-like receptor agonists). Polyplax serrata infection explained a strikingly high proportion of the total variation in innate responses. Contrastingly, faecal oocyst count in microparasitic Eimeria spp. was positively associated with innate immune responsiveness, most significantly for the endosomal receptors TLR7 and TLR9. CONCLUSION: Analogy with relevant laboratory models suggests the underlying causality for the observed patterns may be parasite-driven immunomodulatory effects on the host. A subset of immunomodulatory parasite species could thus have a key role in structuring other infections in natural vertebrate populations by affecting the 'upstream' innate mediators, like toll-like receptors, that are important in initiating immunity. Furthermore, the magnitude of the present result suggests that populations free from immunosuppressive parasites may exist at 'unnaturally' elevated levels of innate immune activation, perhaps leading to an increased risk of immunopathology

    Developing lithium chemistry of 1,2-dihydropyridines : from kinetic intermediates to isolable characterized compounds

    Get PDF
    Generally considered kinetic intermediates in addition reactions of alkyllithiums to pyridine, 1-lithio-2-alkyl-1,2-dihydropyridines have been rarely isolated or characterized. This study develops their "isolated" chemistry. By a unique stoichiometric (that is 1:1, alkyllithium:pyridine ratios) synthetic approach using tridentate donors we show it is possible to stabilize and hence crystallize monomeric complexes where alkyl is tert-butyl. Theoretical calculations probing the donor-free parent tert-butyl species reveal 12 energetically similar stereoisomers in two distinct cyclotrimeric (LiN)3 conformations. NMR studies (including DOSY spectra) and thermal volatility analysis compare new sec-butyl and iso-butyl isomers showing the former is a hexane soluble efficient hydrolithiation agent converting benzophenone to lithium diphenylmethoxide. Emphasizing the criticalness of stoichiometry, reaction of nBuLi/Me6TREN with two equivalents of pyridine results in non-alkylated 1-lithio-1,4-dihydropyridine·Me6TREN and 2-n-butylpyridine, implying mechanistically the kinetic 1,2-n-butyl intermediate hydrolithiates the second pyridine

    A decision framework to identify populations that are most vulnerable to the population level effects of disturbance

    Get PDF
    This study was supported by Office of Naval Research grant N00014-16-1-2858: “PCoD+: Developing widely-applicable models of the population consequences of disturbance.”We present a decision framework to identify when detailed population-level assessments are required to understand the potential impacts of a disturbance-inducing activity on a marine mammal population and discuss how the framework can be applied to other taxa. Species at high risk of population-level effects can be identified using information on the number of individuals that are likely to be disturbed by the activity, total population size, the probability of repeated disturbance, the species’ reproductive strategy, and the life stages (e.g., feeding, pregnant, lactating) of the individuals most likely to be exposed. This hierarchical approach provides those responsible for conducting impact assessments with a time-efficient, cost-effective and reproducible workflow that allows them to prioritise their efforts and assign funds to those species with the most pressing conservation needs. A fully worked case study using marine mammals in the vicinity of a naval training activity is supplied.Publisher PDFPeer reviewe
    corecore