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There is great interest in ecology to understand how wild animals are
affected by anthropogenic disturbances, such as sounds. For example, be-
havioural response studies are an important approach to quantify the im-
pact of naval activity on marine mammals. Controlled exposure experiments
are undertaken where the behaviour of animals is quantified before, during,
and after exposure to a controlled sound source, often using telemetry tags
(e.g., accelerometers, or satellite trackers). Statistical modelling is required
to formally compare patterns before and after exposure, to quantify devi-
ations from baseline behaviour. We propose varying-coefficient stochastic
differential equations (SDEs) as a flexible framework to model such data,
with two components: (1) time-varying baseline dynamics, modelled with
non-parametric or random effects of time-varying covariates, and (2) a non-
parametric response model, which captures deviations from baseline. SDEs
are specified in continuous time, which makes it straightforward to analyse
data collected at irregular time intervals, a common situation for animal track-
ing studies. We describe how the model can be embedded into a state-space
modelling framework to account for measurement error. We present infer-
ential methods for model fitting, model checking, and uncertainty quantifi-
cation (including on the response model). We apply this approach to two
behavioural response study data sets on beaked whales: a satellite track, and
high-resolution depth data. Our results suggest that the whales’ horizontal
movement and vertical diving behaviour changed after exposure to the sound
source, and future work should evaluate the severity and possible conse-
quences of these responses. These two very different examples showcase the
versatility of varying-coefficient SDEs to measure changes in behaviour, and
we discuss implications of disturbances for the whales’ energetic balance.

1. Introduction. There has been a lot of effort in conservation biology to understand
how human activity affects wildlife. One particular focus has been to investigate the effect of
ship sonars and other anthropogenic sounds on marine mammals (Tyack et al., 2011; Southall
et al., 2019). Controlled exposure experiments (CEEs) consist of monitoring the movement
or behaviour of animals, typically using telemetry tags, before and after sound exposure,
to determine if individuals respond behaviourally to the stimuli. A continuously increasing
quantity of tag data now exists to address this issue, from multiple ongoing studies. This has
created a need for adequate statistical methods to describe baseline behaviour and, crucially,
quantify deviations from it following disturbance. A particular focus of these studies has been
on identifying energetically-costly behaviours, such as sudden avoidance or interruption of
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foraging, as effects from these changes can accumulate to decrease animals’ survival and
reproductive rates. These studies have used various types of tags, with different observed
variables and sampling designs, and model formulations have therefore often depended on
the data type and the goal of inference.

In marine mammal studies, the most common approach to identify interruptions of forag-
ing behaviour has been to summarise high-frequency data at the scale of dives, and compare
baseline dives to exposed dives, e.g., in terms of dive duration, maximum depth, or average
acceleration (e.g., using DTags; Johnson and Tyack, 2003). Baseline and exposed dives can
for example be compared using the Mahalanobis distance calculated using selected multi-
variate data streams, to identify unusual behaviour (DeRuiter et al., 2013). An alternative has
been to use these dive summary variables to identify latent behavioural states of animals in
a hidden Markov model (DeRuiter et al., 2017). In that context, the effect of disturbance on
the probabilities of switching between the behavioural states can be estimated, to quantify
the response. These approaches have usually required summarising data to the dive level,
and have therefore not focused on small-scale changes in an animal’s behaviour during an
exposed dive. In cases where within-dive movement was analysed, the aim was to quantify
whether and when a change had occurred, rather than provide a mechanistic description of
the impact of disturbance on the animals’ movement activity (e.g., Stimpert et al., 2014).

In some studies, animals are equipped with satellite tags that record two-dimensional lo-
cations, to detect horizontal movement away from the source of disturbance (Cioffi et al.,
2022). Due to satellite transmission limitations, these data typically have high measurement
error, and irregular intervals corresponding to times the animal came to the surface. Statisti-
cal analysis of such data is challenging, and visual assessment is typically used to measure
avoidance. Recently, continuous-time discrete-space models have been proposed to analyse
such noisy irregular trajectories, which require modelling animal movement on a discrete
spatial grid (Jones-Todd et al., 2022).

We propose varying-coefficient stochastic differential equations (SDEs) as a versatile
method to estimate behavioural responses from different types of CEE tag data. Multiple
SDE formulations have been proposed for the analysis of animal movement data, including
Brownian motion (Pozdnyakov et al., 2014), Ornstein-Uhlenbeck processes (Dunn and Gip-
son, 1977), and the integrated Ornstein-Uhlenbeck process (Johnson et al., 2008). In those
models, the animal’s movement dynamics are specified in terms of a few parameters, e.g.,
representing mean speed or autocorrelation. The varying-coefficient approach we propose
here provides great flexibility to express these parameters as functions of time-varying co-
variates (Michelot et al., 2021). We demonstrate the utility of this approach for behavioural
response studies, based on several extensions to the approach of Michelot et al. (2021): (1)
estimation of deviations from baseline model using difference smooths, (2) uncertainty quan-
tification using simultaneous intervals, (3) measurement error using state-space models, and
(4) model checking using posterior predictive checks. We illustrate the utility of these models
with two common types of CEE data: high-resolution data on diving behaviour from archival
tags, and low-resolution position data from satellite tags. This statistical framework is widely
applicable beyond these examples.

2. Beaked whale movement data. Beaked whales have been the focus of multiple be-
havioural response studies (BRS) due to their apparent vulnerability to the effects of mili-
tary sonar systems (DeRuiter et al 2013, Southall et al. 2016; Tyack et al. 2011). For this
purpose, CEEs have been conducted with different types of animal-borne tags, including
movement and acoustic sensors at different resolutions, to detect individual behavioral re-
sponse (Southall et al., 2016). In this paper, we focus on CEEs for Cuvier’s beaked whales
(Ziphius cavirostris), and analyse two types of data with different variables and resolutions:
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coarse two-dimensional location data from a satellite tag, and fine-resolution depth data from
DTags. Plots of the data are shown in Appendix A of the supplementary materials (Michelot
et al., 2022a).

2.1. Satellite tag data. The satellite tag analysed here was deployed as part of the At-
lantic BRS, a study on the effects of mid-frequency active sonar on deep diving whales. The
tag was a SPLASH10-292, Argos satellite-linked location-depth tag (produced by Wildlife
Computers, Redmond, Washington) remotely deployed using a DAN-INJECT JM 25 pneu-
matic projector (DanWild LLC, Austin, Texas) in the LIMPET configuration (Andrews, Pit-
man and Ballance, 2008) from a 9m rigid-hulled aluminium boat.

The tag was deployed on an adult male Cuvier’s beaked whale off Cape Hatteras, North
Carolina, on the 24th May 2018, and it transmitted for 38 days. Location estimates were de-
rived from Service Argos receivers on polar-orbiting satellites, and were assigned an accuracy
class based on the timing and number of transmissions received during a satellite pass (see
Foley et al., 2021, for details). Only the higher accuracy positions were used. Reliable loca-
tions can only be recorded when the whale is at the surface, and when satellites are available,
which severely limits data collection. Specifically, the latitude of the study site provides only
9% temporal satellite coverage (Cioffi et al., 2022), and the whales spend most of their time
deep underwater, with average 2.2 minute surface ventilation periods (Shearer et al., 2019).
As a result, the locations were sparse in time (average of 2 locations per day), and included
measurement error. The measurement error was available in the form of error ellipses, each
corresponding to the

√
2-sigma contour of a bivariate normal distribution (McClintock et al.,

2015).
To increase data resolution, an Argos goniometer (Woods Hole Group Inc., Bourne, MA,

USA) was deployed from the research vessel to collect further data from the tagged whale’s
transmitter (Cioffi et al., 2022). Locations from the goniometer had high spatiotemporal res-
olution, but they only covered short time periods when the vessel was within range of the
whale. We added these data to the satellite trajectory to increase the information available
for this analysis. We assumed that the goniometer locations had isotropic error ellipses (as
defined above), with radius that depended on the strength of the signal received (a proxy for
distance between the vessel and the whale). Specifically, we set the radius to 100 m when the
signal was stronger than -50 dB, 500 m between -51 and -70 dB, 1 km between -71 and -80
dB, 2 km between -81 and 90 dB, and 10 km for signals weaker than -91 dB.

On June 3rd 2018, at 16:00:04 UTC, the whale was exposed to an hour-long CEE of mid-
frequency active sonar, similar to the tactical sonars used by the US and other navies (Southall
et al., 2016). Data visualisation suggests that the whale moved away from the sonar source
(Southall et al., 2020), but this has not been confirmed by statistical analysis.

2.2. DTag data. DTAGs are multi-sensor archival tags that are attached to animals via
suction cups for up to tens of hours, and record various acoustic and movement variables,
including depth at 50Hz resolution (Johnson and Tyack, 2003). Our analysis included data
from two separate studies: the SOCAL BRS (four tags; for full tag details, see DeRuiter
et al., 2013; Southall et al., 2016), and the Atlantic BRS (one tag; for details, see Southall
et al., 2020). The tags were programmed to release after a predetermined period, if they
had not already detached from the animal, and were recovered to download recorded data.
Pressure recordings were converted to depths and orientation offset from tag position were
performed using calibration information for each tag (Johnson and Tyack, 2003). Data were
downsampled to 15-sec resolution for analysis to reduce computational effort.

Beaked whales typically perform two types of dives: deep dives (up to several kilome-
ters of depth), during which their foraging activity occurs, and shallow dives (Shearer et al.,
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2019). For this analysis, we only retained dives with a maximum depth greater than 700m,
to investigate changes in foraging behaviour (DeRuiter et al., 2013). The processed data set
included 13 dives, each about 1 hour in length.

Two of the whales were exposed to mid-frequency active sonar during a deep dive, each
for a period of 30 min. DeRuiter et al. (2013) used dive summaries, such as duration and
maximum depth, to investigate behavioural changes following sonar exposure from these
data. In this paper, we propose a different approach based directly on the high-resolution
data, which focuses on response at a short temporal scale after the start of exposure.

3. Behavioural response model. One approach to describing behavioural responses of
animals consists in specifying two components: a model of baseline behaviour, and a model
for deviations from that baseline (“response” behaviour). The mathematical formulation of
both components will depend on the specific application, and should be informed by the
research question. One key point is that the definition of the baseline model partially (and
implicitly) determines what constitutes a behavioural response, regardless of the model used
for the deviations. In this section, we propose varying-coefficient SDEs as a flexible model of
baseline behaviour, applicable to various data types. We describe how responses can be mod-
elled in that framework, in particular using difference smooths, and we discuss underlying
assumptions.

3.1. Varying-coefficient stochastic differential equations. Varying-coefficient SDEs are
a versatile class of time series models with time-varying dynamics (Michelot et al., 2021).
We consider the Itô SDE for the continuous-time process (Zt),

dZt = µ(Zt,θt)dt+σ(Zt,θt)dWt,

where µ is the drift function and σ the diffusion function, Wt is a standard Wiener process,
and θt is a vector of time-varying parameters. The drift µ measures the expected change over
infinitesimal time increments, and the diffusion σ captures stochastic variability around this
expected change. In the animal movement context, Zt can for example be the location, veloc-
ity, or depth of the animal at time t. The drift function might therefore represent a preferred
direction of movement, or attraction towards a point in space. The diffusion captures random
deviations, i.e., aspects of movements that cannot be described directly in the drift.

The functions µ and σ are often chosen to have a simple parametric form, to help with im-
plementation and interpretation. In the following, we use Brownian motion and the Ornstein-
Uhlenbeck process for illustration, as these are the models we use in the case study, but
the methodology generalises to other SDEs. In the case of Brownian motion, we have
µ(Zt,θt) = a and σ(Zt,θt) = σ, where a ∈ R and σ > 0 are constant drift and diffusion
parameters, respectively. Similarly, the Ornstein-Uhlenbeck process is defined by the SDE
with µ(Zt,θt) = b(a − Zt) and σ(Zt,θt) = σ, where a ∈ R is the long-term mean of the
process, b > 0 is the strength of the attraction to the mean, and σ > 0 measures the volatility.
In the varying-coefficient approach, the parameters of the SDE are specified as time-varying
functions of covariates. This allows for great flexibility in the dynamics of the modelled pro-
cess, while retaining the simple interpretation of parametric SDEs.

The derivation of the likelihood of an SDE observed at discrete time intervals requires
evaluating its transition density, i.e., the function p(Zt+∆ | Zt) for each time interval of ob-
servation ∆> 0. This transition density is known in closed form for the special cases consid-
ered here (Brownian motion and Ornstein-Uhlenbeck process) and, in the varying-coefficient
setting, we use the value of the parameter at the start of the interval. This is an approxima-
tion based on the assumption that the SDE parameters are constant over the time interval of
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observation. That is, we use the transition densities

Brownian motion: Zt1 | Zt0 = z0 ∼N
[
z0 + at0∆, σ

2
t0∆
]

Ornstein-Uhlenbeck: Zt1 | Zt0 = z0 ∼N
[
(1− e−bt0∆)at0 + e−bt0∆z0,

σ2
t0

2bt0
(1− e−2bt0∆)

]
where ∆ = t1 − t0. More generally, when the transition density is not tractable, a discretisa-
tion approach such as the Euler-Maruyama method can be used (Michelot et al., 2021). This
method assumes that the movement parameters (at, bt, σt) are constant over each time in-
terval; this is a mild assumption for data collected at high resolution, but performance might
decrease for coarse data.

We use the formalism of generalised additive models (GAMs) to specify each parameter
θt as a function of covariates,

(1) h(θt) = α0 + f1(x1t) + f2(x2t) + . . . ,

where h is a link function, α0 is an intercept parameter, and the function fj represents the
relationship between the covariate xj and the parameter (e.g., linear, non-linear, or random
effect). We denote as α the vector of parameters for linear model components (e.g., the
intercept). We model non-linear components with penalised splines, i.e., each function fj is
modelled as the linear combination of basis functions {ψjl}Ll=1, and the basis coefficients
β

(j)
l are penalised to impose smoothness,

(2) fj(xjt) =

L∑
l=1

β
(j)
l ψjl(xjt), β(j) ∼N(0, λ−1

j S
−
j ),

where λj is a smoothness parameter, and S−j is the pseudo-inverse of some chosen penalty
matrix (Wood, 2017; Michelot et al., 2021). The choice of the basis functions ψjl and of
the penalty matrix Sj determines the type of spline; this flexible formulation includes cubic
regression splines and thin plate regression splines as special cases. This approach can also
include i.i.d. normal random effects, where the basis functions are indicators, and Sj is a
diagonal matrix (Wood, 2017). The goal of inference is then to estimate the linear model
coefficients α, the basis function coefficients β for the non-parametric relationships, and
smoothness parameters λ of non-linear functions (or precision of random effects).

In a few simple special cases, this model reduces to a GAM, or to a GAM for location, scale
and shape (GAMLSS; Rigby and Stasinopoulos, 2005). In particular, the Brownian motion
described above can be written as (Zt1 − Zt0)/∆ ∼ N

[
at0 , σ

2
t0

]
. This is a GAMLSS with

response variable (Zt1 − Zt0)/∆, where the response distribution is normal, and the mean
(i.e., location) and standard deviation (i.e., scale) are modelled as non-parametric functions
of covariates. As a consequence, GAMLSS software such as the gamlss package in R can be
used directly in this case (Stasinopoulos and Rigby, 2008), but this does not apply to general
SDEs (e.g., the Ornstein-Uhlenbeck process).

SDEs have been used to model various types of animal behaviours, including movement
around a central location (Dunn and Gipson, 1977), highly directional movement (Johnson
et al., 2008), and habitat selection (Michelot et al., 2019). Their continuous-time formulation
makes it possible to analyse irregularly-sampled data, and to compare or combine studies
with different sampling schemes. In this framework, the specification of a baseline model
requires the choice of: (1) an appropriate SDE, informed by the type of data and the animal’s
movement patterns, and (2) relevant covariates to be included in the SDE parameters. The
SDE should capture a template of the animal’s behaviour under normal conditions, so that
deviations from that template can be quantified. We describe two examples in Section 3.4.
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3.2. Inference and implementation. Given observations from the process (Zt) (e.g., lo-
cations obtained from a tracking device), our aim is to estimate the relationships between
the SDE parameters and covariates (i.e., the functions fj in Equation 1). In practice, various
spline formulations are possible, and we used the R package mgcv to specify the basis func-
tions and penalty matrices for non-linear and random effects in Equation 1 (Wood, 2017).
We followed the approach of Michelot et al. (2021) for model fitting, i.e., to estimate all
linear, non-linear, and random effects of covariates on the SDE parameters. We view Equa-
tions 1 and 2 as a mixed effect model, where the basis coefficients β of non-linear terms are
treated as random effects. The marginal likelihood of such a model, where the random effects
have been integrated out, can be computed using the Laplace approximation, and we imple-
mented it using the Template Model Builder (TMB) R package (Kristensen et al., 2016). We
optimised the marginal likelihood numerically using the function optim() in R, to obtain
estimates of the linear model parameters α and smoothness parameters λ. Predicted values
of the random effects β (including basis function coefficients) can also be obtained, similarly
to best linear unbiased predictors in mixed effect models, to derive the estimated non-linear
relationships between covariates and SDE parameters. For more detail, we refer the reader to
Michelot et al. (2021).

3.3. Modelling the response. In many animal movement analyses, it is of interest to de-
tect behavioural changes, or to compare behaviour over different phases of data. This is par-
ticularly relevant to identify effects of internal or external influences on behaviour, such as
anthropogenic disturbance or habitat degradation.

In the framework of varying-coefficient SDEs, we propose decomposing the animal’s
movement parameters into different components for baseline and response behaviours. This
can be modelled within the additive structure of Equation 1, where time-varying terms can
be included to capture behavioural changes after disturbance. The form of these additional
terms, and the choice of the parameter on which to include them, will generally depend on
the application, as different formulations might be required for different types of deviations
from baseline. Perhaps the simplest response model would be to add an intercept term during
the sound exposure (or for some set period after start of exposure). This could for exam-
ple capture an unusually high (or low) level of activity directly following disturbance. This
simple model requires specifying a time period over which to include the additional inter-
cept and, although this choice could be based on biological expertise, it might be difficult in
many applications. Alternatively, in studies where the level of disturbance is measured (e.g.,
received sound level), this could directly be included as a covariate acting on the SDE param-
eters. This option is attractive due to its mechanistic interpretation, but direct measurements
of disturbance are not always available.

In the following, we propose using separate smooth relationships between parameters and
covariates for the baseline and response phases of the data. More specifically, we suggest
estimating one smooth function for baseline, and a “difference smooth” to measure the dis-
crepancy between baseline and post-disturbance periods. Figure 1 illustrates the concept of a
difference smooth, and we provide details for the model formulations of interest in the next
section. The main assumption of this approach is that the deviation between baseline and
response behaviours can be modelled using a smooth function. This would for example be
violated if the response of interest is a “jerk” reaction corresponding to a large, yet momen-
tary, change in movement dynamics. In cases where the assumption of smoothness holds,
however, difference smooths are a convenient formulation, as they make it possible to di-
rectly carry out inference (including uncertainty quantification) on the discrepancy between
baseline and post-disturbance behaviour.

3.4. Case studies.
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FIG 1. Example model terms plotted over time: (A) baseline covariate effect f1(x1t), e.g., of time of day; (B)
difference smooth measuring deviation from baseline, fd(xd,t), which eventually decays to zero; and (B) SDE
parameter θt, obtained as θt = f1(x1t) + fd(xd,t). The shaded band shows the period of exposure, and the
dashed line in (C) is the value of the parameter in the baseline model. In a behavioural response study, the main
focus is the deviation from baseline (B).

3.4.1. Horizontal avoidance. Avoidance is defined as movement away from a distur-
bance, and it has been documented in beaked whales (e.g., Tyack et al., 2011). When this
behaviour is observed in the Easting-Northing plane (rather than in the depth dimension),
we call it horizontal avoidance. In the framework of varying-coefficient SDEs, we propose
modelling horizontal avoidance as follows. We define the location process (Zt) of the animal
(Easting-Northing) as an isotropic two-dimensional Ornstein-Uhlenbeck process, where each
coordinate is defined by

(3) dZt = b(at −Zt)dt+σ dWt,

where at is a time-varying centre of attraction, b > 0 is the strength of attraction to a, and
σ > 0 is the diffusion parameter. We define the time-varying centre of attraction as

(4) at = α0 + fd(t)I{t≥texp},

where I is the indicator function, and texp is the time of start of exposure. Combining Equa-
tions 3 and 4, we obtain the following SDEs before and after start of exposure,

Before: dZt = b(α0 −Zt)dt+σ dWt

After: dZt = b(α0 −Zt)dt+bfd(t)dt+ σ dWt .

The “before” model is an OU process with centre of attraction α0. The “after” model is a
modification of that process with an additional drift (or “advection”) term bfd(t). That is,
the animal’s movement after start of exposure is driven by two opposing forces: attraction
towards a long-term central location α0, and time-varying advection away from that location,
corresponding to deviation from baseline. In this example, the function fd can therefore be
interpreted as the animal’s horizontal avoidance.

Gurarie et al. (2017) propose a similar approach, where an animal’s home range shift is
estimated from tracking data, based on OU or related models. They model a range shift as a
linear function, i.e., the centre of attraction moves along a straight line from one position to
another. Our approach can therefore be viewed as a generalisation, where the range shift is
estimated as a non-linear function.
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3.4.2. Disruption of foraging dive behaviour. Past studies have reported that sound ex-
posure can prompt a beaked whale to stop echolocating during a foraging deep dive, leading
to decreased potential energetic gains (e.g., DeRuiter et al., 2013). Beaked whales have also
been observed to extend non-foraging dives to depths beyond that of non-foraging dives ob-
served in baseline, which may increase energetic costs. Here, we model the depth Dt using
varying-coefficient Brownian motion,

(5) dDt = at dt+σt dWt,

where at and σt are the time-varying drift and diffusion parameters, respectively. The drift is
modelled as a function of proportion of time through dive x1t ∈ [0,1], to capture the shape of
dives,

(6) at = αa0 + fa1 (x1t).

The diffusion σt is also assumed to depend on x1t, with a different relationship during
baseline and response phases. We also include a dive-specific random intercept in σt to cap-
ture heterogeneity in the data. Finally, the model is

(7) log(σt) = ασ0 + ασdt + fσB(x1t) +

K∑
k=1

fσR,k(x1t)× I{dt=k} × I{x2t=1}

where dt ∈ {1, . . . ,K} is the dive index at time t, fσB describes the baseline model, fσR,k is
the difference smooth for exposed dive k, and x2t is a binary variable equal to 0 before start
of exposure and 1 after. The parameter ασ0 is the population-level mean intercept, and the

dive-specific random intercepts are assumed to follow ασk
i.i.d.∼ N(0, ν2), where ν2 measures

variance around the population mean. The indicator functions ensure that a separate differ-
ence smooth is included for each exposed dive, and that it is only added after the start of
exposure.

3.5. Measurement error using state-space models.

3.5.1. State-space formulation. Measurement error is common in animal tracking data,
and it is in particular present in the Argos locations analysed in Section 6. State-space models
have been proposed to account for observation error in animal movement studies (Anderson-
Sprecher and Ledolter, 1991; Jonsen, Myers and Mills Flemming, 2003). In this section, we
describe how the SDEs presented above can be embedded into a state-space formulation.
In the case study, measurement error only arises in two-dimensional tracking data used to
detect horizontal avoidance. Therefore, we present the methods in the special case of the
varying-coefficient Ornstein-Uhlenbeck process (described in Section 3.4.1). However, the
approach can be applied directly to other SDEs where the transition density is normal (or
approximately normal, e.g., under the Euler-Maruyama discretisation).

Let Zt be the two-dimensional position of the animal at time t, described by an isotropic
Ornstein-Uhlenbeck process (i.e., both dimensions are described by the same parameters),
and let Z̃i be a (noisy) observation obtained at time ti. Assuming that the measurement error
can be modelled with a normal distribution, we consider the state-space formulation with the
following observation and latent state equations,

Observation: Z̃i =Zti + εi, εi ∼N(0,Ωi)(8)

Latent state: Zti+1
∼N

[(
1− e−bti∆i

)
ati + e−bti∆iZti ,

σ2
ti

2bti

(
1− e−2bti∆i

)
I2

]
(9)

where ∆i = ti+1 − ti, Ωi is the measurement error covariance matrix at time ti, and I2 is
the 2×2 identity matrix. Here, the latent state equation is simply the transition density of the
Ornstein-Uhlenbeck process.
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3.5.2. Inference with the Kalman filter. Inference for this model can be carried out us-
ing the Kalman filter, which provides a computationally efficient method to evaluate the
likelihood and to obtain one-step-ahead estimates of the latent state variables (Durbin and
Koopman, 2012). To apply this method, we rewrite Equations 8 and 9 as linear equations in
matrix notation. The observation model (Equation 8) can be written as

(10) Z̃i =AZti + εi, εi ∼N(0,Ωi)

where A= I2. Similarly, we can write the latent state model (Equation 9) as

Zti+1
= TiZti +Biui + ηi, ηi ∼N(0,Qi)

where Ti = e−bti∆iI2,Bi = (1−e−bti∆i)I2, ui = ati , andQi = σ2
ti(1−e

−2bti∆i)/(2bti)I2.
Durbin and Koopman (2012) describe the algorithm for the Kalman filter in terms of those
matrices (Section 4.3.2), and the derivation of the model likelihood as a by-product (Section
7.2.1).

Other state-space model methods can be applied directly using the formulation highlighted
above, such as Kalman smoothing. Kalman smoothing is an algorithm that returns predic-
tions of the latent state variables given the full observed time series, as well as uncertainty
estimates (Durbin and Koopman, 2012). This might be particularly useful in studies where
reconstructing the true trajectory of an animal is of primary interest.

4. Uncertainty quantification and model checking.

4.1. Confidence intervals for non-parametric terms. A key challenge is to estimate the
difference smooths and determine whether they clearly deviate from zero. One approach is
to compute confidence intervals on the difference smooths, where overlap with zero may be
interpreted as lack of clear deviation. Two types of confidence intervals can be derived for
a smooth function, with different interpretations. Pointwise confidence intervals can only be
used to make statements about uncertainty at a given covariate value, whereas simultaneous
confidence intervals represent joint uncertainty across the domain of definition of the func-
tion. Beyond difference smooths, confidence intervals are crucial to interpret relationships
between SDE parameters and covariates (e.g., in baseline model).

The two types of intervals are contrasted in Figure 2, and we describe methods to derive
them based on posterior simulations. Note that, even though we do not carry out full Bayesian
inference, we use terminology from the empirical Bayes view of hierarchical models (Miller,
2019). We therefore call the joint distribution of fixed and random effect parameters the “pos-
terior”. This is approximated by a multivariate normal distribution centred on the maximum
likelihood estimates γ̂ = (α̂, β̂, λ̂), with covariance matrix Σ̂ derived from the inverse of
the Hessian of the log-likelihood (e.g., using the function sdreport in the TMB package;
Kristensen et al., 2016).

4.1.1. Pointwise confidence intervals. Consider a grid over the range of the covariate of
interest, (x1, x2, . . . , xM ). We can obtain pointwise 100(1 − α)% confidence intervals, as
follows:

1. Generate K posterior draws of all fixed and random effect parameters from N(γ̂, Σ̂).
(Note that, because γ̂ includes λ̂, uncertainty on the smoothness parameter is propagated
to posterior draws of α and β used in the following steps.)

2. From these posterior draws, derive K realisations of the smooth function.
3. For each point xm of the grid, compute quantiles of the K functions with probabilities
α/2 and 1 − α/2. These correspond to the lower and upper bounds of the confidence
interval, respectively.



10

From a Bayesian viewpoint, the K realisations are draws from the posterior distribution of
the smooth, and the interval can therefore be interpreted as a credible interval. They can also
be viewed as confidence intervals, with the expected coverage “across the function” (Marra
and Wood, 2012). That is, if we denote as pm the proportion of such intervals that include
the true function at xm, then we expect (p1 + p2 + . . . pM )/M ≈ 1− α (e.g., 0.95 for 95%
confidence intervals). Pointwise confidence intervals are illustrated in Figure 2(A).

Although this procedure is for one smooth function, confidence intervals on the SDE pa-
rameter θt can be derived similarly. The only modification is that, in step 2, a realisation of
the SDE parameter across the covariate grid needs to be computed. This requires adding other
model terms (i.e., effects of other covariates, fixed to a given value), and applying the inverse
link function.
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FIG 2. Illustration of confidence intervals. The thick black line is the mean estimate, and thin black lines are
posterior samples for the spline. (A) The vertical segments show pointwise 95% confidence intervals on a grid of
values of the covariate. (B) The shaded area is a 95% simultaneous confidence band.

4.1.2. Simultaneous confidence intervals. An alternative approach to quantify uncer-
tainty in a function is to derive simultaneous confidence intervals. A simultaneous 100(1−
α)% confidence band has the following interpretation: 100(1−α)% of such confidence inter-
vals will include the true smooth function in its entirety. This requirement is more stringent
than for pointwise intervals, and simultaneous intervals therefore tend to be wider. Figure
2(B) shows an example of 95% simultaneous confidence band.

Here, we follow the simulation-based method described by Ruppert, Wand and Car-
roll (2003) to obtain simultaneous confidence intervals over the grid x = (x1, . . . , xM ).
We outline the main steps, but refer to Section 6.5 of Ruppert, Wand and Carroll (2003)
for details. In this section, we denote as f the true function, f̂ the estimated smooth,
y = (f(x1), . . . , f(xM )), and ŷ = (f̂(x1), . . . , f̂(xM )).

1. Generate K posterior draws of γ̂ − γ from N(0, Σ̂).
2. From each posterior draw, derive a realisation of the difference between the true function

and the estimated smooth, as ŷ−y =Cx(γ̂ −γ), where Cx is the design matrix of basis
function evaluations over x.

3. From each realisation, approximate the standardised difference between f̂ and f by

H = max
m=1,...,M

∣∣∣∣∣(Cx[γ̂ − γ])m

ŜD(ŷm − ym)

∣∣∣∣∣ ,
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where the standard deviation in the denominator is measured from the K replications of
ŷ− y.

4. The simultaneous confidence interval is

ŷ± q1−αŜD(ŷ− y),

where q1−α is the (1− α) quantile of H .

The choice between pointwise and simultaneous intervals depends on the application, and
on whether joint statements across the range of the smooth are required. We suggest that si-
multaneous confidence intervals are a natural choice to quantify uncertainty on the difference
smooths that measure deviations from baseline behaviour (e.g., fd in Equation 4). Indeed, to
determine whether there is clear evidence of deviation, the question of interest is whether the
identically zero function is included in the confidence region (rather than whether the confi-
dence region overlaps zero for some covariate value, which is a weaker statement). As with
pointwise intervals, confidence bands for the SDE parameter can also be computed using this
method, where additional model terms need to be added to Cx.

4.2. Posterior predictive checks. We propose a simulation-based approach to model
checking for a fitted varying-coefficient SDE (Meng, 1994). The general idea is to simu-
late from the fitted model, and compare patterns in the simulated data and in the observed
data, where discrepancies suggest lack of fit. The suggested procedure is as follows:

1. GenerateK draws from the posterior distribution of fixed and random effects, {γ(1), . . . ,γ(K)}.
2. Using each posterior draw γ(k), simulate a time series z(k) over an appropriate time period

for comparison with the observed time series.
3. Compute a relevant summary statistic for each simulated time series, g(z(1)), . . . , g(z(K)),

which measures an important feature of the data-generating process.
4. Compute the summary statistic for the observed time series, g(z).
5. Compare g(z) to the distribution of the g(z(k)), to assess how compatible the observed

data are with the estimated model. This could for example involve the computation of a
p-value, as the proportion of g(z(k)) which are more extreme than g(z) (Meng, 1994).

This method is used to check goodness-of-fit of a model of baseline diving behaviour in
Section 6.2, where the test statistics are characteristics of a dive (e.g., proportion of time
descending, proportion of time spent under 500m).

5. Simulation study. We assessed the performance of the workflow outlined in Sec-
tion 3.1 to estimate deviations from baseline using simulations. We simulated data from
a Brownian motion, with drift and diffusion parameters specified as known functions of a
time-varying covariate x1. The relationship between the diffusion parameter and x1 took two
different forms, depending on a binary covariate representing disturbance or response be-
haviour. We then fitted a varying-coefficient SDE, with a difference smooth to capture the
discrepancy in diffusion between baseline and response behaviour.

We simulated data from a Brownian motion with no drift and with time-varying diffusion
parameter defined as,

Diffusion (baseline): σBt = 0.5− 1.5(x1t − 0.5)2

Diffusion (response): σRt = 0.05 + 5(x1t − 0.5)2

where x1t ∈ [0,1] was analogous to “proportion of time through dive” in the beaked whale
diving study (Section 3.4.2). For each iteration of the simulation, we generated nine indepen-
dent time series: eight from the baseline model, and one that started in the baseline model
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and switched to the response model when x1t ≥ 0.25. Each time series contained n = 200
points, at random times uniformly distributed between t1 = 0 and tn = 10, to check that the
method works with irregular time intervals.

For each simulated data set, we fitted a varying-coefficient Brownian motion with a dif-
ference smooth on the diffusion parameter, to capture the discrepancy between the dynamics
of the process during baseline and response phases, similar to Equation 7. We repeated this
procedure 2000 times, and the results are shown in Figure 3. The results suggest that both
the baseline model and the deviation from baseline (difference smooth) were well estimated.
In particular, both the smoothness and the shape of the true functions used to simulate were
captured well by the fitted splines. We also used these simulations to check the coverage
of the simultaneous confidence intervals for the difference smooth. We found that the 95%
confidence band included the entire true function in 95.6% of the simulation runs, indicating
good coverage.
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FIG 3. Estimated baseline model (left) and difference smooths (right) in simulation study. The thin grey lines are
50 randomly-selected estimated smooths (out of 2000), the vertical grey segments show the 2.5%, 10%, 90%, and
97.5% pointwise quantiles of the 2000 estimated smooths, and the thick black line is the true function used in the
simulation.

6. Beaked whale case study. For all analyses, we used the R package smoothSDE,
available on Github at https://github.com/TheoMichelot/smoothSDE (Mich-
elot et al., 2021). The online supplementary materials include code and data for the analysis
(Michelot et al., 2022b), and additional details about implementation (Michelot et al., 2022a,
Appendix B).

6.1. Horizontal avoidance. We analysed the Argos trajectory described in Section 2.1
using the model for horizontal avoidance described in Section 3.4.1, embedded in a state-
space formulation (Section 3.5) to account for measurement error. The error ellipses from the
satellite tag were used to create a covariance matrix for the animal’s location at each time of
observation, which was then used to account for measurement uncertainty in the likelihood
(Hi in Equation 10). The data set was complemented with goniometer observations, which
were more precise but only covered a short time period. The data were highly irregular, with
intervals ranging from a few seconds to over a day, but the continuous-time approach could
still be applied directly.

Figure 4 shows the time-varying centre of attraction parameters in each dimension (Easting
and Northing), between the start of exposure and the end of the study. The negative drift in

https://github.com/TheoMichelot/smoothSDE
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both dimensions suggests that the centre of attraction deviated towards the South-West, for
about a week following the start of exposure in the afternoon of June 3rd (June 4th to June
11th). The maximum deviation in the first coordinate was estimated to be about 50km to
the West, and the maximum deviation in the second coordinate was about 125km to the
South. After June 12th, the whale seemed to revert to its baseline centre of attraction for the
remainder of the study period.
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FIG 4. Estimated difference smooths for beaked whale centre of attraction, in the x coordinate (left) and y coordi-
nate (right), as functions of time (after start of exposure). Grey areas are 95% simultaneous confidence intervals.
Deviations from zero suggest drift away from the whale’s baseline centre of attraction (i.e., horizontal avoidance).

This analytical method has provided evidence of unusual horizontal movement following
exposure, and the consequences of such a large-scale movement (in both time and space) for
the individual whale are not fully understood. These results should be interpreted in the con-
text of all other available information (e.g., dive data, visual observations, biological knowl-
edge, expert judgement) to inform a conclusion about whether the behaviour change was a
response to the sonar exposure, the severity of the response, and the possible consequences
(which is beyond the scope of this analysis).

6.2. Unusual diving behaviour. We used the model for depth described in Section 3.4.2
to analyse time series of depth collected from five beaked whales. The data set comprised
13 deep dives, and included two controlled exposure experiments. We downsampled depth
to a 15-sec time resolution to reduce the computational cost of model fitting while retaining
information about fine-scale behaviour.

The estimated parameters for the baseline model are presented in Figure 5 as functions
of the proportion of time through a dive. The drift parameter, which measures the mean
direction of change, was positive during the descent phase of the dive (because the depth
increases), then close to zero during the bottom phase, and negative during the ascent phase
(when the depth decreases and the animal returns to the surface). The diffusion parameter
was highest during the bottom phase of the dive, suggesting high variability due to active
foraging behaviour.

We used posterior predictive checks to evaluate whether the chosen Brownian motion was
an appropriate model of baseline diving behaviour. We applied the procedure described in
Section 4.2 to compare the true data to simulations from the model. We simulated 1000
baseline dives, and compared them to the observed baseline dives based on the following
metrics:
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FIG 5. Estimated baseline parameters in the study of beaked whale diving behaviour: the drift µ is the expected
change (left), and the diffusion σ is the variability (right). The shaded areas show 95% pointwise confidence
bands.

• proportion of time ascending, measured by proportion of time steps whereDi+1 >Di+10
(i.e., depth increases by more than 10 metres over a 15-sec interval);

• proportion of time descending, i.e., proportion of time steps where Di+1 <Di − 10;
• maximum depth;
• proportion of time spent deeper than 500m;
• proportion of time spent deeper than 1000m;
• persistence in vertical direction of movement, i.e., proportion of consecutive pairs of time

steps where direction of movement remains the same (either ascending or descending).

These metrics were chosen to assess how well the fitted model captured the shape of
baseline dives. The results are shown in Figure 6. For the first five metrics, the mean observed
value lay well within the distribution of simulation values, suggesting that features related
to the overall shape of dives were well captured by the model. The observed data, however,
displayed stronger directional persistence than the simulated dives. This illustrates the limited
ability of Brownian motion to capture persistent movement, as there is no built-in mechanism
to create directional autocorrelation. It is worth noting that the directional persistence of the
simulated dives was between 0.68 and 0.86, which is much higher than the value of 0.5
expected under a simple random walk with no time-varying parameters. This is because some
correlation in direction is induced by the model used for the drift parameter of the process.
A possible improvement would be to consider the continuous-time correlated random walk,
which directly captures autocorrelation in velocity (Johnson et al., 2008; Michelot et al.,
2021), and we discuss this in Section 7.

In this model, behavioural responses were modelled using difference smooths, i.e., func-
tions capturing deviations from the baseline model during exposed dives. One difference
smooth was estimated for the diffusion parameter σ for each of the two exposed dives, to
estimate the difference in the depth variability compared to a typical baseline dive. Figure
7 shows the estimated smooths with confidence bands. Both curves display large departures
from zero after the start of exposure, indicating deviations from baseline behaviour. In the
first exposed dive (“zc10_272”), the most noticeable pattern is that the diffusion parameter
was much lower than normal during the bottom phase. This decreased variability in depth re-
flects a reduced level of activity, which suggests that this animal was not searching or chasing
prey, i.e., this was not a foraging dive. In the second exposed dive (“zc11_267”), σt was also
low during the middle part of the dive, which was followed by a period of unusually high
vertical activity during the third quarter of the dive. This period coincides with the bottom
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FIG 6. Goodness-of-fit for baseline model of beaked whale diving behaviour. Each plot contrasts the observed
mean of a metric for baseline dives (vertical dotted line), and a histogram of values obtained from 1000 simulated
dives. An observed value in the tails of the distribution suggests lack of fit. The metrics are described in the text.

phase of this dive, which was delayed because the animal appeared to be engaged in a bout
of shallow diving, but conducted a deep dive after the start of exposure (see Figure S2 in the
supplementary materials; Michelot et al., 2022a).
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FIG 7. Results of analysis of beaked whale diving behaviour. Top row: difference smooths for the diffusion pa-
rameter σt (on log scale) during the two exposed dives, with 95% simultaneous confidence bands. Deviation from
zero suggests behaviour inconsistent with baseline model. Bottom row: dashed lines show the baseline estimate
for σt, and solid lines show the response model (including difference smooths), with 95% simultaneous confi-
dence bands. The baseline model is not identical for the two dives (and also different from Figure 5) due to the
dive-specific random intercept. In all plots, the vertical dotted lines mark the start and end of sound exposure.
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7. Discussion. Varying-coefficient SDEs are versatile models to study the effects of co-
variates on the dynamics of temporal processes. Here, we have demonstrated their utility to
estimate behavioural changes in cetaceans, including changes in the pattern of diving be-
haviour, and horizontal avoidance. This method stands in contrast with previous statistical
approaches applied in this context, where data have often been summarised at the time scale
of dives (e.g., dive duration, maximum depth; DeRuiter et al., 2013, 2017). Our analysis
of DTag data at a fine time scale is one of the first attempts to describe detailed dynamics of
within-dive behaviour, and contrast them between baseline and exposed dives. Often, conclu-
sions about whether an individual exhibited a behavioural response to sonar exposure requires
multiple lines of evidence, and expert biological knowledge is needed to interpret model out-
puts. In particular, experts are required to evaluate responses in terms of their severity, and
possible effect on the vital rates of individuals (Southall et al., 2008; Miller et al., 2012). We
have shown that varying-coefficient SDEs can provide such lines of evidence for different
types of behaviour (horizontal movement, diving), and data recorded at different resolutions
from different types of telemetry devices. Critically, our method provides fine-scale detail
about the nature of the response, in the context of relevant covariates, as well as the du-
ration of the response. This is valuable additional information beyond the identification of
a behavioural change point. Some other analytical methods, such as Mahalanobis distance,
identify observations that are extreme with respect to the full baseline data set. These might
not be able to identify behavioural responses that are within the repertoire of baseline be-
haviour, even if their occurrence is unusual or unexpected given what the animal was doing
at the point of exposure.

In this paper, we focused on two model formulations, which were particularly relevant to
the application: the varying-coefficient Brownian motion and Ornstein-Uhlenbeck process.
The approach is not limited to these models, though, and other SDEs could be implemented
in different contexts (see examples in Michelot et al., 2021). One other notable SDE is the
continuous-time correlated random walk (or “integrated Ornstein-Uhlenbeck”), which can
capture strong autocorrelation in movement, and is therefore well-suited to high-resolution
tracking data (Johnson et al., 2008). The R package crawl implements this model with (pos-
sibly non-linear) covariate effects on the movement parameters, similar to the approach de-
scribed in Section 3.1, but it does not perform automatic smoothness selection for non-linear
components (Johnson and London, 2018). The correlated random walk model might be better
suited to capture autocorrelation in the depth data of Section 6.2; however, it is considerably
more complex than Brownian motion, and would come with greater computational cost and
numerical instability for parameter estimation. In general, many SDE formulations are avail-
able, and the choice depends on the data type and research question (e.g., the OU process has
a centre of attraction, whereas Brownian motion does not). Future work could further explore
the trade-off between parsimony and goodness-of-fit in varying-coefficient SDEs.

The method of inference used to estimate the time-varying SDE parameters, based on the
approach of Michelot et al. (2021), requires two (potential) approximations: (1) we assumed
that the SDE parameters are constant over each time interval between consecutive observa-
tions, and (2) the Euler-Maruyama discretisation is required for SDEs whose closed-form
transition density is not known (Section 3.1). The error introduced by both approximations
could be mitigated using data augmentation methods. The idea is to define a new time grid,
finer than that of observations, and apply the discretisation over those shorter time intervals.
This requires integrating over the value of the process at the additional time points, which can
for example be done using Markov chain Monte Carlo (Elerian, Chib and Shephard, 2001)
or the Kalman filter. Note that this approach also requires a method to interpolate covariate
values, as these are needed to evaluate the SDE parameters on the finer time grid. This would
be straightforward for some covariates (e.g., time of day, or proportion of time through dive),
but might be challenging in many applications.
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SDEs have recently been proposed to model group movement of animals (Niu, Blackwell
and Skarin, 2016; Milner, Blackwell and Niu, 2021). That approach could be extended to
allow for time-varying dynamics and, using the methods presented in this paper, it could be
used to estimate behavioural responses for multiple individual animals. This model would not
be limited to individual-specific responses, but could also capture changes in the interactions
between individuals (e.g., group breaking off after disturbance).

The examples that we presented illustrate a general framework to analyse behavioural re-
sponses from telemetry data. The first step is to specify a model for baseline periods, typically
in terms of spatial or temporal covariates of interest (e.g., time of day, habitat variable). Then,
additional terms can be added in the model for the SDE parameters, to capture deviations
from baseline during exposure phases. Difference smooths are powerful for this purpose, as
they explicitly model the difference in a smooth relationship between levels of a categorical
variable (which could for example represent pre- and post-disturbance). We showcased how
difference smooths can be interpreted in terms of behavioural response, for two different ap-
plications. In particular, simultaneous confidence bands are useful to compare the deviation
from baseline to the zero function. Although we checked the coverage of these confidence in-
tervals in simulations, we note that this method might lead to a large rate of false positives in
real data applications if the model assumptions are violated (e.g., if the baseline model does
not adequately capture heterogeneity in baseline data). For this reason, the shape and ampli-
tude of the difference smooth should be inspected as part of the interpretation, rather than
merely whether it clearly differs from zero. A wide range of varying-coefficient SDEs can be
implemented using the smoothSDE R package, and we anticipate that these methods will be
a key tool to investigate the potential impact of disturbance, such as sonar, on individuals and
populations.
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SUPPLEMENTARY MATERIAL

Code and data
R code and preprocessed data sets used in the two case studies (Michelot et al., 2022b).
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Supplementary details about data analyses
Additional details about the data sets and about implementation (Michelot et al., 2022a).
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