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1 Preamble

In this report, we present a framework for simulating responses of cetaceans to various military sonar ex­
posure contexts using Bayesian hierarchical modelling. This work was motivated by the need to assess
the utility of different types of animal­attached biotelemetry tags in improving our understanding of dose–
response relationships (Schick et al. 2019). Specifically, we used a Monte Carlo approach to conduct a
sensitivity analysis of the effects of uncertainty in acoustic dose measurements (i.e. received sound levels)
on the probability of behavioural response. Accompanying R code is available and fully described in a sister
document (see Bouchet et al. 2020 for details).

2 Introduction

Sound plays a critical role in the lives of cetaceans, andmany species of whales, dolphins, and porpoises are
sensitive to the adverse effects of chronic and acute exposure to anthropogenic underwater noise (Weilgart
2007; Williams et al. 2015; Erbe et al. 2019). For instance, elevated noise levels (e.g. in areas of dense
vessel traffic) have the potential to impair animal communication (‘auditory masking’; Erbe et al. 2016;
Cholewiak et al. 2018), disrupt movement and diving behaviours, elicit physiological stress, and/or cause
displacements from preferred habitats (DeRuiter et al. 2013), ultimately interfering with key life functions
such as foraging, mating, nursing, or resting, with knock­on repercussions on individual fitness, energy
expenditure, and survival (Tyack 2008; Erbe et al. 2018; Wensveen et al. 2019). In recognition of man­
made noise as an emerging threat to wildlife, an increasing number of calls have been made to strengthen
management and mitigation frameworks for sound­producing activities (Dolman et al. 2011; Dolman and
Jasny 2015). In the United States, the Marine Mammal Protection Act of 1972 (MMPA, 16 U.S.C. 1361 et
seq.) regulates the ‘take’ (i.e. defined as the harassment, hunting, capture, or killing) of marine mammals by
U.S.­based organisations anywhere around the globe, including areas beyond national jurisdiction (i.e. on
the high seas). The U.S. Navy is legally bound to comply with the MMPA and other U.S. Federal laws
(e.g. the Endangered Species Act ESA 16 U.S.C.1531 et seq.) pertaining to protected marine taxa, and is
thus required to determine the potential effects of Systems Command military readiness training exercises
on cetaceans, especially where those involve the use of tactical high­powered sonar technology and the
deployment of explosives/munitions.
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Of particular concern are the impulsive sounds produced by active sonars operating in the lower (LFAS,
~0.1­2 kHz) and mid­frequency bands (MFAS, 3–8 kHz) (Falcone et al. 2017). LFAS and MFAS systems
were developed in the 1950s for anti­submarine detection and naval warfare (D’Amico and Pittenger 2009;
de Quirós et al. 2019), and their use has recently been implicated in a number of atypical mass strand­
ings largely involving deep­diving pelagic whales from the Ziphiidae family, such as Cuvier’s beaked whales
(Ziphius cavirostris) (Cox et al. 2006; Angela D’Amico and Mead 2009; Filadelfo et al. 2009; Fernández et
al. 2012; Simonis et al. 2020; see also Parsons 2017 for a recent review). In the last two decades, recur­
ring reports of such mortality events prompted a series of coordinated international research efforts aimed
at quantifying probabilities of response to both simulated and actual naval sonar sources under controlled
experimental exposure conditions (Southall et al. 2016; Harris et al. 2016). These behavioural response
studies (BRSs) have catalysed significant advances in our understanding of the short­term impacts of spe­
cific acoustic doses on animals (Harris et al. 2016; Harris et al. 2018), highlighting substantial variability
in the nature, magnitude, and consequences of observed responses within and between individuals and
populations (e.g. DeRuiter et al. 2013; Goldbogen2013; Friedlaender et al. 2016; Southall et al. 2019).

In BRSs, whale behaviour is typically monitored using animal­borne bio­logging tags, with additional infor­
mation sometimes derived from opportunistic visual observations or passive acoustics (e.g. Berga et al.
2019; von Benda­Beckmann et al. 2019). The onerous costs of running at­sea BRS experiments, which
often exceed many hundreds of thousands of dollars for a single field season (Harris et al. 2016), provide
a strong impetus for integrating different sampling approaches to maximise data collection opportunities
over a range of complementary spatio­temporal scales. As such, a rising number of studies simultaneously
deploy short­term (ca. hours), high­resolution, archival digital tags (DTAGs; Johnson and Tyack 2003) and
medium to long­term (ca. days to months), coarse­resolution, position and depth­transmitting satellite tags
(e.g. Tyack et al. 2011; Wensveen et al. 2019; Schick et al. 2019). Suction cup DTAGS incorporate multiple
sensors, including a hydrophone (sampling rate up to 192 kHz), a pressure sensor, triaxial accelerometers
and magnetometers, and an embedded VHF transmitter, which enable fine­scale diving behaviour (i.e. ori­
entation, depth, and speed) to be captured in three dimensions synchronously with the recording of audio
data (Tyson et al. 2012; Laplanche et al. 2015). Although DTAGs offer detailed insights into dynamic
activity states, their limited sampling duration precludes assessments of long­term baseline behaviours,
both prior to and following noise disturbance (Schick et al. 2019). By contrast, implantable satellite tags
allow the animals’ horizontal movements to be captured over much wider spatial and temporal domains
(Schorr et al. 2014), yet most modern instruments lack on­board hydrophones and therefore cannot ob­
tain direct sound measurements. Furthermore, satellite tags programmed to transmit via the Argos system
(https://www.argos­system.org/) can suffer from substantial positional errors that may introduce large un­
certainties in estimates of acoustic dose (often exceeding 50 dB re 1𝜇Pa rms in range) (Schick et al. 2019;
von Benda­Beckmann et al. 2019).

Such discrepancies in data quality and resolution between the two types of tags raise important questions
with regards to the optimisation of field protocols in BRSs (Harris et al. 2018). To inform optimal choices
of tag configurations, we conducted a Bayesian simulation exercise designed to explore how uncertainty
in the measurements of received sound levels made on both digital and satellite tags may affect inference
of dose–response relationships. Specifically, we simulated behavioural response data from virtual whales
exposed to military sonar and fitted with different tags, and investigated the sample sizes and accuracy
required to estimate dose–response functions (also referred to as risk functions, Moretti et al. 2014) with an
acceptable degree of confidence. The use of computational Bayesian methods for model fitting in ecology
has increased in recent decades (Clark 2005; Beaumont 2010; Dorazio 2016). Here, Bayesian analysis
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offers a natural mechanism for estimating the parameters of potentially complex hierarchical models within
a single framework that is robust to the small sample sizes often encountered in BRS research, and can
provide measures of parameter uncertainty that are directly interpretable in probabilistic terms (Parent and
Rivot 2012; Antunes et al. 2014). This is crucial for making appropriate predictions of responsiveness during
real­world naval exercises (Harris et al. 2018).

3 Original model

This work expands on the Bayesian hierarchical dose–response model presented by Miller et al. (2014)
(Figure 1). We only summarise the model briefly here, and refer the reader to the original publication for full
details.

The model assumes that for any sonar exposure session, each individual whale 𝑖 has a response threshold
that is a function of (1) the typical average response threshold of all whales, 𝜇; (2) two contextual covariates
(namely, exposure history and frequency of the sonar signal/stimulus), in addition to random between­whale
(𝜙2) and within­whale, between­session variation (𝜎2). The full model consists of both a process model,
which describes the underlying factors driving the true thresholds of exposure for each session, and an
observation model, which links the true thresholds to the observed values, measured with error (𝛿2).

The process model is interpreted as follows. Let 𝑡𝑖𝑗 be the true, unknown threshold of exposure that elicits
a behavioural response for the 𝑖𝑡ℎ whale in the 𝑗𝑡ℎ exposure session. We assume that this threshold follows
a truncated normal distribution such that:

𝑡𝑖𝑗 ∼ 𝑇 𝑁(𝜇𝑖𝑗, 𝜎2, 𝐿, 𝑈) (1)

where 𝜎2 is the within­animal between­session variance in threshold, and 𝐿 and 𝑈 are lower and upper
limits to the threshold. Let us also assume that the expected threshold 𝜇𝑖𝑗 for the 𝑖𝑡ℎ whale in the 𝑗𝑡ℎ
exposure session is a function of the expected threshold for that whale, 𝜇𝑖, as well as whether the animal
has been previously exposed to sonar, and the frequency band of the sonar signal used. This gives:

𝜇𝑖𝑗 ∼ 𝜇𝑖 + 𝛼 𝐼(exposed)𝑖𝑗 + 𝛽 𝐼(MFAS)𝑖𝑗 (2)

Here, 𝛼 is a parameter governing the effect of exposure history on threshold, and 𝐼(exposed)𝑖𝑗 is an
indicator function to which a value of 0 is assigned during the first exposure session, and a value of 1
thereafter. Likewise 𝛽 represents the effect of MFAS relative to LFAS, with 𝐼(MFAS)𝑖𝑗 taking the value 1 if
the exposure session was with MFAS, and 0 otherwise. Lastly, we assume that the expected threshold for
each whale 𝜇𝑖 follows a truncated normal distribution:

𝜇𝑖 ∼ 𝑇 𝑁(𝜇, 𝜙2, 𝐿, 𝑈) (3)

where 𝜇 is the mean threshold for all whales, 𝜙 is the between­whale variance in threshold, and L and U
are defined as above.
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Figure 1: Bayesian hierarchical dose–response model used by Miller et al. (2014) in their analysis of killer
whale (Orcinus orca) dose–escalation data. (A) Directed acyclic graph showing the model structure. Model
variables are denoted by circles, whereas constants are represented by boxes. Variables monitored for
posterior inference are shaded in grey. Black and grey arrows indicate stochastic and deterministic rela­
tionships, respectively. (B) Posterior dose–response curve showing the probability of onset of avoidance
against received sound pressure level (SPL, dB re 𝜇Pa), for the same species. The solid central line repre­
sents the posterior mean, followed by 50%, 95%, and 99% credible interval lines.

The observation model allows the inclusion of uncertainty in simulated threshold values. Here, we as­
sumed that measurements on tags followed a normal distribution i.e.

𝑦𝑖𝑗 ∼ 𝑁(𝑡𝑖𝑗, 𝛿2) (4)

Note that Miller et al. (2014) set the standard deviation 𝛿 to 2.5 dB, giving a 95% density interval for the
threshold of ± 5.0 dB around the point estimate.

4 Simulations

4.1 Scenarios

We considered four scenarios, each a variant of the original Miller et al. (2014) model (Figure 2). Scenarios
differed in the nature and complexity of their observation and process model components, as described
below. Simulation plans and directed acyclic graphs (DAGs) are reported in Appendix A and Appendix B),
respectively, at the end of this document.

Scenario 1 is a reduced version of Miller et al. (2014), whereby individuals are exposed to sonar only once
and fitted with the same tag type. As such, the within­whale variance, 𝜙, and the between­whale variance,
𝜎, are combined into a single parameter representing the overall variance in threshold, 𝜔. There are no
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covariates affecting the probability of response in this scenario. We tested an array of realistic sample
sizes, from 𝑁 = 5 to 𝑁 = 40, and increasing levels of measurement error from 𝛿 = 2.5 dB re 1𝜇Pa to 35
dB re 1𝜇Pa. The lower bound reflects typical errors observed on DTAGs (Isojunno & Wensveen, personal
communication), while the upper bound is consistent with estimates from sattelite­tagged whales (Schick et
al. 2019; von Benda­Beckmann et al. 2019; Joyce et al. 2020).

Figure 2: Visual summary of the four simulation scenarios considered. The complexity of process and ob­
servationmodel components goes from low (­) to high (+) along each axis, and reflects the inclusion/omission
of covariates affecting the response thresholds (process model) and errors in measurements of the dose
being treated as constants for all animals or as tag­specific variables. Covariates include exposure history
and sonar signal type. Scenario IDs are shown in the central black boxes.

Scenario 2 is identical to the original Miller et al. (2014) model, and was implemented with a range of
measurement errors between 2.5 dB re 1𝜇Pa and 35 dB re 1𝜇Pa, as in scenario 1. To keep the average
expected threshold𝜇𝑖𝑗 centred in the simulations, we treated signal type as a relative effect between animals
exposed to MFAS vs. LFAS, assuming that the former exacerbated sensitivity to sonar exposure. As such,
the 𝛽 parameter was coded in as an effect size, such that for 𝛽 = 20 dB re 1𝜇Pa, the corresponding
coefficient values for MFAS and LFAS were ­10 and +10 dB re 1𝜇Pa, respectively.
Scenario 3 mimicks scenario 1, but includes a more complex observation model that accommodates tag­
specific measurement errors. Indeed, the positions of tagged individuals are recorded with varying precision
— typically higher for animals fitted with DTAGs that are also concurrently followed by visual observers at the
surface, and far lower for satellite­tagged animals monitored through the Argos system (Costa et al. 2010).
Argos relies on the Doppler shift between a polar­orbiting satellite and the animal to communicate positional
information (Schick et al. 2019). For tagged individuals to be detected and geolocalised, a sufficient number
of satellites must be available when animals are at the surface. This presents a significant challenge for
deep­diving cetaceans such as beaked whales, which only come up to breathe for short periods of time, thus
reducing the likelihood of successful data uplinks to overhead receivers. In practice, observations are still
recorded with uncertainty, even when links are successful (Schick et al. 2019). Prior to 2008, each position
was assigned an ordinal location quality code (e.g., 3, 2, 1, 0, A, B, and Z), with typically substantially higher
errors in longitude than in latitude (Vincent et al. 2002), such that true errors around calculated positions
are better represented by 2­dimensional anisotropic ellipses than by 1­dimensional circles (McClintock et al.
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2015). Following 2008, Argos has therefore been supplying error ellipses with each location, whereby each
ellipse has three components — namely its semi­major axis (𝑀 ), semi­minor axis (𝑚), and orientation (𝑐).
Taken together, these define a bivariate normal distribution of geolocation error, with larger ellipses being
associated with higher positional uncertainty (McClintock et al. 2015). Accounting for this uncertainty is
critical in making fair assessments of variance in received levels, and thus in quantifying dose–response
relationships effectively (Schick et al. 2019). To address this, we first estimated the coordinates of each
virtual whale on the (𝑥, 𝑦) plane at the time of exposure, based on its simulated true response threshold
𝑡𝑖𝑗 and a simple inverse­square circular transmission loss model (Figure 3). Note that sound absorption is
frequency­dependent, and here, we assumed an absorption coefficient of 0.185 dB re 1 𝜇Pa per km, which
corresponds to a 3 kHz signal under normal sea conditions (Miller et al. 2014). Coordinates were obtained
relative to the noise source, using a random angle sampled from a uniform distribution 𝑈(0, 360). Next, we
created one plausible realisation of an Argos ellipse for each animal by randomly sampling a vector of ellipse
parameters 𝜃𝑖𝑗 = (𝑀𝑖𝑗, 𝑚𝑖𝑗, 𝑐𝑖𝑗) from an existing dataset on tagged Cuvier’s beaked whales (Ziphius
cavirostris) collected as part of the Atlantic BRS (Schick et al. 2019). We then generated 10,000 candidate
locations within this ellipse, and calculated the acoustic dose received at each of these locations based on
the aforementioned transmission loss model. We took the standard deviation of the resulting values as a
reasonable estimate of the measurement uncertainty associated with each satellite­tagged whale. Note that
the Atlantic BRS also targeted short­finned pilot whales (Globicephala macrorhynchus). Given the unique
diving behaviours of each species, the R code has been set up so that the above calculations can be run
on either (see the argument species.argos in the function run.scenario(); Bouchet et al. 2020). By contrast,
we fixed 𝛿 to a constant value of 2.5 dB re 1 𝜇Pa for whales fitted with DTAGs, as the accuracy of these
instruments is unlikely to vary appreciably. At each sample size, animals were randomly chosen and fitted
with either type of tag, according to a pre­determined ratio (digital vs. satellite) which we varied from 0% to
100% in 20% increments (Appendix A).

Scenario 4merges scenarios 2 and 3 insofar as individuals are repeatedly exposed and fitted with different
types of tags. Here, response thresholds are also dependent on signal type (MFAS vs LFAS) and exposure
history.
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Figure 3: Visual summary of the approach taken to estimate uncertainty in received levels after accounting
for positional errors inherent to Argos­linked satellite tags.

4.2 Data and parameters

Table 1 below provides a summary of simulation inputs and parameter values.

In brief, the simulated data were generated so as to reflect the number of trials, sonar frequencies, and
orders of exposures observed in real­world BRSs (Miller et al. 2014). We focused on Cuvier’s beaked
whales (Ziphius cavirostris) as a model species, considering a single exposure session in scenarios 1 and
3 and three repeated trials in scenarios 2 and 4. The source level of the sonar signal was held constant at
210 dB re 1 𝜇Pa in all simulations (Tyack et al. 2011; DeRuiter et al. 2013; Antunes et al. 2014; Stimpert et
al. 2014). The true underlying mean response threshold (for all whales) was taken as 𝜇 = 150 dB re 1 𝜇Pa
based on Moretti et al. (2014), and is also broadly consistent with the values used in Miller et al. (2014),
Schick et al. (2019), and other studies. By default, between­animal and within­animal, between­session
variation were set to 𝜙 = 20 dB re 1 𝜇Pa and 𝜎 = 25 dB re 1 𝜇Pa, respectively. As variances add, the
overall combined variation 𝜔 was equal to √𝜙2 + 𝜎2 ≈ 30 dB re 1 𝜇Pa.
It is common for some individuals to exhibit no response across the range of doses experienced during an
escalation session (Antunes et al. 2014; Harris et al. 2015). The resulting data are right­censored, and indi­
cate that the animals’ response thresholds exceed the maximum dose received by some unknown amount
(Klein and Moeschberger 2003). It is critical to include these data in any analysis, as they are informative
about the nature of dose–response relationships (Harris et al. 2015). Note, however, that there is limited
empirical evidence of behavioural effects at very high sound levels nearing 200 dB re 1𝜇Pa (or above),
and that the value used as an upper boundary for right­censoring may have an overwhelming influence on
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posterior inference if not chosen appropriately (Wensveen 2016). Here, we simulated right­censoring by
making a random draw from a uniform distribution 𝑅𝑐 ∼ 𝑈(190, 200) for each exposed animal (Tyack
et al. 2011; DeRuiter et al. 2013; Antunes et al. 2014; Stimpert et al. 2014). In practice, if the simulated
response threshold for an animal (i.e. 𝜇𝑖 in scenarios 1 and 3, and 𝑡𝑖𝑗 in scenarios 3 and 4; see Appendix B)
was greater than the associated realised maximum dose𝑅𝑐, then that threshold was assumed to be equally
likely between 𝑅𝑐 and the upper limit 𝑈 (set equal to the source level, as all whales would be expected to
respond if located right over the source).

Note that, for simplicity, we did not implement Gibbs Variable Selection (GVS) (Tenan et al. 2014; Miller
et al. 2014). Rather, in scenarios 2 and 4, we assessed the ability of the models to discriminate covariate
effects by examining the posterior distributions of the relevant coefficients, 𝛼 and 𝛽. If the corresponding
95% credible intervals included zero, then we deemed the model unable to detect an effect.

Table 1: Parameter values used in bayesian simulations. The last two parameters (i.e. animal density and
number of bins) relate to the effective response range. See section 4.5 for details.

Parameter Definition Value Unit Scenario

Ns Number of simulations 500 All

N Sample size (number of whales) 5, ..., 40 All

Nt Number of trials (exposure sessions) 3 2 + 4

𝛿 Uncertainty (sd) in dose measurements 2.5, ..., 35 dB 1 + 2

P(SAT) Proportion of whales fitted with satellite tags 0, ..., 100 % 3 + 4

DTAG.sd Uncertainty (sd) in dose measurements on DTAGs 2.5 dB 3 + 4

SL Level of the noise source 210 dB All

Sp Study species Z. cavirostris All

𝜇 Mean response threshold for all whales 150 dB All

𝜔 Combined variation in threshold (sd) 30 dB 1 + 3

𝜙 Between­whale variation (sd) 20 dB 2 + 4

𝜎 Within­whale, between­session variation (sd) 25 dB 2 + 4

𝛼 Effect of exposure history on response threshold 8 dB 2 + 4

𝛽 Effect of MFAS vs. LFAS on response threshold 20 dB 2 + 4

Rc Right­truncation limit (right­censored data) 190 to 200 dB All

D Animal density 1 Animal/km2 All

Nb Number of bins used to calculate the ERR 500 All

9



4.3 Priors

Prior distributions are required on all top­level random variables in the hierarchical model (Laplanche et al.
2015) (shown as grey circles in Figure 1). We followed Miller et al. (2014) and largely chose diffuse uniform
priors (Table 2), with the exception of the two coefficients governing the respective effects of exposure history
(𝛼) and sonar frequency band (𝛽), for which we assumed normal distributions centred on zero. Note that
this choice equates to a prior belief of no effect. Our expectation therefore was that as sample size would
increase and errors decrease, posterior estimates of 𝛼 and 𝛽 would move away from zero and closer to
the truth, and that their associated credible intervals would shrink. Importantly, priors were specified so as
to constrain model parameters within biologically plausible bounds. For instance, 𝜇 could take any value
between 60 and 210 dB re 1𝜇Pa with equal probability, under the conservative assumption that any noise
below the lower limit would be barely audible above ambient (Pacini et al. 2011; Schick et al. 2019), and
that all animals would respond at or above the upper limit (Antunes et al. 2014; Miller et al. 2014). Variance
parameters for the observation model were assumed known, and hence did not require priors.

Table 2: Summary of prior values for each parameter, expressed in dB re 1 𝜇Pa. Lower and upper limits are
reported for uniform distributions (U), andmean and standard deviations are reported for normal distributions
(N). True underlying values are shown in the right­most column.

Scenario Variable Prior

All 𝜇 U(60, 200)
1 + 3 𝜔 U(0, 40)
2 + 4 𝜙 U(0, 30)
2 + 4 𝜎 U(0, 30)
2 + 4 𝛼 N(0, 10)
2 + 4 𝛽 N(0, 10)

4.4 Model fitting

Models were fitted using aMarkov ChainMonte Carlo (MCMC) algorithm, implemented in the software JAGS
via the rjags library (Plummer 2019) in R v3.6.0 (R Core Team 2019). Model parameters were estimated
based on 10,000 posterior samples, taken after a variable burn­in (i.e. as the number of samples required to
achieve convergence differed between scenarios and simulation conditions; see Table 3). Each parameter
was initialised using arbitrary starting values. In all models, MCMC runs consisted of three Markov chains,
which were assessed for convergence using functions from the coda (Plummer et al. 2019) and bayesplot
(Gabry and Mahr 2019) packages. This was done both by visual inspection of trace plots, and by ensuring
that the scale reduction factor, or Gelman­Rubin statistic (𝑅̂), was < 1.1 (Kruschke 2015). We fitted models
to 500 simulated datasets, running the R code in parallel on multiple cores to increase execution speed
(Bouchet et al. 2020).

Table 3: Number of Markov Chain Monte Carlo (MCMC) iterations discarded as initial burn­in in each sce­
nario. 𝛿 = Uncertainty in measurements of the acoustic dose (sd, in dB re 1𝜇Pa). P(SAT) = Proportion of
animals fitted with satellite tags (in %).
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Scenarios

𝛿 P(SAT) 1 2 3 4

2.5 ­ 10,000 60,000 ­ ­
5 ­ 10,000 60,000 ­ ­
10 ­ 40,000 90,000 ­ ­
15 ­ 75,000 125,000 ­ ­
20 ­ 75,000 125,000 ­ ­
25 ­ 100,000 150,000 ­ ­
30 ­ 100,000 150,000 ­ ­
35 ­ 100,000 150,000 ­ ­
­ 0 ­ ­ 50,000 100,000
­ 20 ­ ­ 50,000 100,000
­ 40 ­ ­ 75,000 125,000
­ 60 ­ ­ 75,000 125,000
­ 80 ­ ­ 125,000 175,000
­ 100 ­ ­ 125,000 175,000

4.5 Model outputs

Reliable assessments of sonar impacts cannot be made without knowledge of animal density patterns and
sound transmission properties, for a given exposure context. In particular, single­value step function thresh­
olds commonly used in ‘traditional’ impact assessments have been shown to grossly underestimate the
numbers of animals affected by a given sound disturbance (Tyack and Thomas 2019). Because of this, we
calculated the effective response range (or effective response radius, ERR) from the posterior estimates
of model parameters in each simulation. Drawing from concepts rooted in distance sampling theory, the
ERR is a novel metric of impact defined as the distance beyond which as many animals are expected to
respond as do not respond within it (see Tyack and Thomas 2019 for a technical explanation). We assumed
the same simple inverse­square circular transmission loss model as previously described, and performed
calculations within 500 bins placed over a maximum range given by the distance at which received levels
drop below 60 dB re 1𝜇Pa (i.e. such that the probability of response is effectively zero), which in this case
equalled ca. 240 km.

We compared the posterior distributions of 𝜇, 𝜔, 𝜙, 𝜎, 𝛼, 𝛽 and the ERR with their ‘true’ underlying values,
focusing on three key diagnostics: (1) precision, expressed as the average width of the parameters’ poste­
rior credible intervals (CIw, in dB re 1𝜇Pa or km); (2) accuracy, measured as the average absolute percent
mean bias (PMB, in %); and (3) identifiability, as captured by the average prior posterior overlap (PPO),
obtained using the MCMCtrace function in package MCMCvis (Youngflesh 2018). Checking the PPO is use­
ful for identifying parameter­redundant models, i.e. models in which the prior for a parameter simply dictates
its posterior distribution, and the data have little if any bearing on the results. A 35% guideline for overlap
has been suggested as an indicator of weak parameter identifiability, meaning that when PPO < 35%, the
data may be informative enough to overcome the influence of the prior (Gimenez et al. 2009). Note that, as
a derived quantity, the ERR has no prior and therefore no PPO.
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Lastly, we also computed dose–response curves from each model in the same way as Miller et al. (2014),
and created plots of the associated posterior median and posterior credible interval lines for a range of
chosen quantiles (from 5% to 95%, in 5% increments).

5 Results

For both clarity and brevity, only key results are presented below. The full set of dose–response curves and
summary plots for each scenario is available from the authors upon request.

5.1 Scenario 1

Dose–response curves indicated a strong interaction between sample size (𝑁 ) and measurement errors
(𝛿) in this scenario (Figure 4), with the uncertainty around estimated relationships rapidly inflating as 𝑁
decreased and 𝛿 increased. All else being equal, changes in posterior uncertainty were more pronounced
at the lowest sample sizes. The curves obtained for sample sizes of 𝑁 = 5 to 10 and 𝛿 = 15 to 20 dB re
1𝜇Pa were qualitatively similar to the one derived by Miller et al. (2014) for killer whales (Orcinus orca).
The model appeared able to estimate 𝜇 with negligible bias, however 𝜔 was consistently under­estimated
when sample sizes were low and errors high, a pattern mirrored in estimates of the ERR (Figures 5 and
6). For a given sample size, precision increased (up to two­fold) for all parameters as errors were lowered
to a level commensurate with that of DTAGs (𝛿 = 2.5 dB re 1𝜇Pa). 𝜇 was found to be identifiable (PPO
< 35%) in all but the most extreme conditions (i.e. lowest 𝑁 and highest 𝛿), highlighting the relevance of
the information contained in the simulated data for predicting the population­level threshold of response.
However, considerable overlap between prior and posterior was observed for 𝜔, particularly when 𝑁 < 15
(irrespective of the level of measurement error) (Figure 6).
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Figure 4: Example dose–response curves estimated under scenario 1 for a range of sample sizes (N) and
errors in dose measurements (𝛿). The solid line represents the average posterior median across Ns = 500
simulations, followed by the average 5%, 10%, 15%… and 95% credible intervals in darker to lighter shades
of blue.
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Figure 5: Summary of posterior inference for key model parameters under scenario 1. Circles and bars
denote, respectively, the average posterior median and average posterior credible intervals across Ns =
500 simulations, for combinations of sample sizes (N) and observation errors (𝛿, standard deviation in mea­
surements of the acoustic dose). Parameters are as follows: (A)mean response threshold for all whales, 𝜇,
(B) overall (between and within­whale) variation in response threshold, 𝜔, and (C) effective response range
(ERR). X­axis scales are expressed in dB re 1𝜇Pa (A,B) and km (C), respectively. Dashed lines represent
true underlying values for each parameter.
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Figure 6: Precision, accuracy, and identifiability of posterior estimates of the mean response threshold for
all whales (𝜇) (top), the combined (between­whale and within­whale) variation in threshold (𝜔) (middle),
and the effective response range (ERR) (bottom), under scenario 1. Columns show (A) the average width of
credible intervals (CIw) across simulations, expressed in dB re 1𝜇Pa for 𝜇 and 𝜔 and in km for ERR, (B) the
average absolute percent mean bias (PMB, in %), defined as (posterior mean­truth)/truth, and (C) the prior
posterior overlap (PPO, in %). PPO values above 35% indicate that parameters may be non­identifiable
(Gimenez et al. 2009).
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5.2 Scenario 2

Similarly to scenario 1, an interaction between sample size (𝑁 ) and measurement errors (𝛿) was apparent
in this case (Figure 7), with larger uncertainty in estimated relationships with decreasing 𝑁 and increasing
𝛿. The model was able to estimate 𝜙 with negligible bias across most samples sizes, as well as 𝛽 when
the number of simulated whales exceeded 𝑁 = 20. All other posterior parameter estimates deviated from
their true underlying values to varying degrees, with larger bias consistently observed in simulations with
high measurement errors. Again, the effective response range (ERR) was under­estimated in all but the best
simulation conditions (i.e. high sample sizes and low errors) (Figures 8 & 9). The model was unable to detect
an effect of previous exposure history on expected response thresholds (𝛼), however the simulated effect of
sonar signal frequency (𝛽) was successfully identified in all runs at 𝑁 = 40, and when measurement errors
were limited to a maximum of SD = 15 and 5 dB re 1𝜇Pa at 𝑁 = 20 and 𝑁 = 15, respectively. This aligns
with observations of high overlap (>35%) between prior and posterior for 𝛼, whereas 𝛽 was identifiable in
more than half of test conditions (Figure 9).

5.3 Scenario 3

Sample size was found to be the main driver of variability around estimated dose–response relationships in
this scenario, such that curves remained virtually identical as the ratio of digital vs. satellite tags changed,
but became more uncertain as 𝑁 decreased (Figure 10). Accordingly, credible intervals for all parameters
were large with small datasets (e.g. 𝑁 = 5), and gradually decreased as a higher number of virtual whales
were tagged (Figure 11). Losses in accuracy, precision, and identifiability with decreasing 𝑁 were more
pronounced than in scenario 1 (with an equivalent underlying process model) (Figure 12). 𝜇 was always
identifiable (PPO < 35%), and 𝜔 consistently so for 𝑁 > 15.

5.4 Scenario 4

Consistent with scenario 3 (i.e. where the same observation model was used), dose–response curves re­
mained largely similar for a given sample size, irrespective of the number of satellite tags deployed (Figure
13). Credible intervals for all parameters were large with small datasets (e.g. 𝑁 = 5), and decreased as
a higher number of virtual whales were tagged (Figure 14). No effect of previous exposure history could
be identified (i.e. the posterior credible intervals for 𝛼 always included zero), yet the influence of sonar fre­
quency (𝛽) could be detected with sample sizes as low at 𝑁 = 15, in line with 𝛽 being identifiable in two
thirds of test conditions (Figure 15). The effective response range (ERR) was estimated with limited bias,
and with lowest uncertainty at highest sample sizes.

Note that in the previous two scenarios, we emulated the deployment of digital and satellite tags by modify­
ing the level of measurement error (𝛿) allowed in the observation model. This was done by treating 𝛿 as a
constant for all whales regardless of exposure, with low 𝛿 values (e.g. 2.5 dB re1𝜇Pa) taken to be represen­
tative of the uncertainty associated with DTAGs, and high values corresponding to uplinks of consistently
poor quality (i.e. high geolocational error) from satellite tags (e.g. 35 dB re1𝜇Pa). Under these conditions,
measurement uncertainty played a strong role in dictating dose–response relationships (see sections 5.1
and 5.2). This is an extereme case, however, as positional estimates derived from satellite tags vary in qual­
ity, meaning that some measurements of the acoustic dose experienced by satellite­tagged animals can still
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be made with reasonable precision (Figure 16). Here, the dominant influence of sample size over tag choice
in scenarios 3 and 4 can be explained by the limited range of variation in received levels estimated from
satellite tags under real­world settings, conditional on the sound propagation model described previously
(average 25%, 50% and 75% quantiles of SD(dose) = 8.3, 11.6, and 20.2 dB re1𝜇Pa respectively).

Figure 7: Example dose–response curves estimated under scenario 2 for a range of sample sizes (N) and
errors in dose measurements (𝛿). The solid line represents the average posterior median across Ns = 500
simulations, followed by the average 5%, 10%, 15%… and 95% credible intervals in darker to lighter shades
of blue.
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Figure 8: Summary of posterior inference for key model parameters under scenario 2. Circles and bars
denote, respectively, the average posterior median and average posterior credible intervals across Ns =
500 simulations, for combinations of sample sizes (N) and observation errors (𝛿, standard deviation in mea­
surements of the acoustic dose). Parameters are as follows: (A) effect of exposure history on response
threshold, 𝛼, (B) effect of sonar frequency on response threshold, 𝛽, (C) mean response threshold for all
whales, 𝜇, (D) between­whale variance in response threshold, 𝜙, (E) within­whale, between­session vari­
ance in response threshold, 𝜎, and (F) effective response range (ERR). X­axis scales are expressed in dB re
1𝜇Pa (A to E) and km (F), respectively. Dashed lines represent true underlying values for each parameter.
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Figure 9: Precision, accuracy, and identifiability of posterior estimates of the effect of exposure history (𝛼)
(top), the effect of sonar frequency (𝛽) (middle), and the effective response range (ERR) (bottom), under
scenario 2. Columns show (A) the average width of credible intervals (CIw) across simulations, expressed
in dB re 1𝜇Pa for 𝛼 and 𝛽 and in km for ERR, (B) the average absolute percent mean bias (PMB, in %),
defined as (posterior mean­truth)/truth, and (C) the prior posterior overlap (PPO, in %). PPO values above
35% indicate that parameters may be non­identifiable (Gimenez et al. 2009).
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Figure 10: Example dose–response curves estimated under scenario 3 for a range of sample sizes (𝑁 )
and proportions of animals fitted with satellite tags (P(SAT)). The solid line represents the average posterior
median across Ns = 500 simulations, followed by the average 5%, 10%, 15%… and 95% credible intervals
in darker to lighter shades of blue.
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Figure 11: Summary of posterior inference for key model parameters under scenario 3. Circles and bars
denote, respectively, the average posterior median and average posterior credible intervals across Ns =
500 simulations, for combinations of sample sizes (N) and proportions of animals fitted with satellite tags
(P(SAT), in %). Parameters are as follows: (A) mean response threshold for all whales, 𝜇, (B) overall
(between and within­whale) variation in response threshold, 𝜔, and (C) effective response range (ERR).
X­axis scales are expressed in dB re 1𝜇Pa (A,B) and km (C), respectively. Dashed lines represent true
underlying values for each parameter.
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Figure 12: Precision, accuracy, and identifiability of posterior estimates of the mean response threshold for
all whales (𝜇) (top), the combined (between­whale and within­whale) variation in threshold (𝜔) (middle),
and the effective response range (ERR) (bottom), under scenario 3. Columns show (A) the average width of
credible intervals (CIw) across simulations, expressed in dB re 1𝜇Pa for 𝜇 and 𝜔 and in km for ERR, (B) the
average absolute percent mean bias (PMB, in %), defined as (posterior mean­truth)/truth, and (C) the prior
posterior overlap (PPO, in %). PPO values above 35% indicate that parameters may be non­identifiable
(Gimenez et al. 2009).
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Figure 13: Example dose–response curves estimated under scenario 4 for a range of sample sizes (𝑁 )
and proportions of animals fitted with satellite tags (P(SAT)). The solid line represents the average posterior
median across Ns = 500 simulations, followed by the average 5%, 10%, 15%… and 95% credible intervals
in darker to lighter shades of blue.

23



Figure 14: Summary of posterior inference for key model parameters under scenario 4. Circles and bars
denote, respectively, the average posterior median and average posterior credible intervals across Ns =
500 simulations, for combinations of sample sizes (N) and proportions of animals fitted with satellite tags
(P(SAT), in %). Parameters are as follows: (A) effect of exposure history on response threshold, 𝛼, (B)
effect of sonar frequency on response threshold, 𝛽, (C) mean response threshold for all whales, 𝜇, (D)
between­whale variance in response threshold, 𝜙, (E) within­whale, between­session variance in response
threshold, 𝜎, and (F) effective response range (ERR). X­axis scales are expressed in dB re 1𝜇Pa (A to E)
and km (F), respectively. Dashed lines represent true underlying values for each parameter.
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Figure 15: Precision, accuracy, and identifiability of posterior estimates of the effect of exposure history (𝛼)
(top), the effect of sonar frequency (𝛽) (middle), and the effective response range (ERR) (bottom), under
scenario 4. Columns show (A) the average width of credible intervals (CIw) across simulations, expressed
in dB re 1𝜇Pa for 𝜇 and 𝜔 and in km for ERR, (B) the average absolute percent mean bias (PMB, in %),
defined as (posterior mean­truth)/truth, and (C) the prior posterior overlap (PPO, in %). PPO values above
35% indicate that parameters may be non­identifiable (Gimenez et al. 2009).
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Figure 16: Variation in the estimated acoustic dose experienced by 2,000 simulated animals fitted with
Argos­linked satellite tags at incremental distances from the sonar noise source. Values are expressed as
the standard deviation (SD) in received levels across 10,000 candidate locations sampled within a plausible
error ellipse around each individual, assuming an inverse­square circular transmission loss model (see
Figure 3 for details).

6 Key messages

• The diagrams presented herein facilitate direct comparisons of experimental conditions (i.e. combina­
tions of 𝑁 x 𝛿 and 𝑁 x P(SAT)), such that questions surrounding the optimisation of field protocols in
BRSs can be readily answered.

• For instance, a similar level of confidence in estimates of the effective response range can be obtained
from a sample of 𝑁 = 10 whales with low measurement errors (𝛿 = 2.5 dB re 1𝜇Pa, emulating the
deployment of DTAGs) as from a sample of 𝑁 = 40 whales with high measurement errors (𝛿 = 35 dB
re 1𝜇Pa, emulating satellite tags with consistently poor uplinks) (scenario 1).

• The larger the sample size, the larger the observation error (or the proportion of satellite tags) that is
permissible to make inference of dose–response relationships with a desired level of certainty.

• Similar patterns of decreased precision, accuracy, and identifiability at smaller sample sizes and larger
errors are observed across scenarios.

• The variance in response threshold is consistently more difficult to estimate than the mean, with pos­
terior distributions undifferentiable from their associated priors in many cases.

• Conditional on the use of a circulation sound propagation model, substantial improvements to esti­
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mates of variance can however be obtained with larger sample sizes. This is critical, as these param­
eters are key to determining dose–response relationships and therefore quantifying impact.

• When the observation model allows for tag­specific measurement errors (scenarios 3 and 4), sample
size becomes the main driver of uncertainty in dose–response relationships, as satellite tags still allow
measurements of received levels with relatively high precision.

• The effect of exposure history on expected response thresholds was seldom detected, whereas that
of sonar frequency could be correctly identified in most cases when 𝑁 > 15.

• The data presented in this report reflect the specific parameter values used in the simulations. Although
these were chosen to be as representative of current BRSs as possible, it is important that users
consider these results in light of their own study designs and experimental needs.

7 Conclusion

We demonstrated substantial improvements in the ability to estimate dose–response relationships and dis­
turbance impacts at larger sample sizes, largely independently of the types/combinations of biotelemetry
tags deployed on simulated whales. Despite heterogeneous measurement error, this suggests that pre­
vious efforts at deploying satellite tags have been valuable at furthering our understanding of cetacean
responses to sonar, and should be pursued into the future.

8 Future work

A draft manuscript summarising the results of this work is currently being prepared for publication.

Bouchet PJ, Harris CM, Thomas L. (In prep). Optimising tagging programmes for understanding cetacean
responses to military sonar exposure. Target journal: Biology Letters (https://royalsocietypublishing.org/
journal/rsbl).
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A Appendix A – Simulation plans

Tabular summaries of the simulation plans for each scenario are given below. sim: Unique simulation
identification number. N: Sample size (number of animals). Ns: Number of simulations. N(DTAG): Number
of animals fitted with digital tags. N(SAT): Number of animals fitted with Argos satellite tags. P(SAT):
Proportion of animals fitted with Argos satellite tags. See Table 1 for details on model parameters.
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A.1 Scenario 1

sim N 𝜇 𝜔 𝛿 Covariates Ns

1 5 165 30 2.5 None 500
2 5 165 30 5.0 None 500
3 5 165 30 10.0 None 500
4 5 165 30 15.0 None 500
5 5 165 30 20.0 None 500
6 5 165 30 25.0 None 500
7 5 165 30 30.0 None 500
8 5 165 30 35.0 None 500
9 10 165 30 2.5 None 500
10 10 165 30 5.0 None 500
11 10 165 30 10.0 None 500
12 10 165 30 15.0 None 500
13 10 165 30 20.0 None 500
14 10 165 30 25.0 None 500
15 10 165 30 30.0 None 500
16 10 165 30 35.0 None 500
17 15 165 30 2.5 None 500
18 15 165 30 5.0 None 500
19 15 165 30 10.0 None 500
20 15 165 30 15.0 None 500
21 15 165 30 20.0 None 500
22 15 165 30 25.0 None 500
23 15 165 30 30.0 None 500
24 15 165 30 35.0 None 500
25 20 165 30 2.5 None 500
26 20 165 30 5.0 None 500
27 20 165 30 10.0 None 500
28 20 165 30 15.0 None 500
29 20 165 30 20.0 None 500
30 20 165 30 25.0 None 500
31 20 165 30 30.0 None 500
32 20 165 30 35.0 None 500
33 40 165 30 2.5 None 500
34 40 165 30 5.0 None 500
35 40 165 30 10.0 None 500
36 40 165 30 15.0 None 500
37 40 165 30 20.0 None 500
38 40 165 30 25.0 None 500
39 40 165 30 30.0 None 500
40 40 165 30 35.0 None 500
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A.2 Scenario 2

sim N 𝜇 𝜙 𝜎 𝛿 𝛽 𝛼 Covariates Ns

41 5 165 20 25 2.5 20 8 Frequency + exposure 500
42 5 165 20 25 5.0 20 8 Frequency + exposure 500
43 5 165 20 25 10.0 20 8 Frequency + exposure 500
44 5 165 20 25 15.0 20 8 Frequency + exposure 500
45 5 165 20 25 20.0 20 8 Frequency + exposure 500
46 5 165 20 25 25.0 20 8 Frequency + exposure 500
47 5 165 20 25 30.0 20 8 Frequency + exposure 500
48 5 165 20 25 35.0 20 8 Frequency + exposure 500
49 10 165 20 25 2.5 20 8 Frequency + exposure 500
50 10 165 20 25 5.0 20 8 Frequency + exposure 500
51 10 165 20 25 10.0 20 8 Frequency + exposure 500
52 10 165 20 25 15.0 20 8 Frequency + exposure 500
53 10 165 20 25 20.0 20 8 Frequency + exposure 500
54 10 165 20 25 25.0 20 8 Frequency + exposure 500
55 10 165 20 25 30.0 20 8 Frequency + exposure 500
56 10 165 20 25 35.0 20 8 Frequency + exposure 500
57 15 165 20 25 2.5 20 8 Frequency + exposure 500
58 15 165 20 25 5.0 20 8 Frequency + exposure 500
59 15 165 20 25 10.0 20 8 Frequency + exposure 500
60 15 165 20 25 15.0 20 8 Frequency + exposure 500
61 15 165 20 25 20.0 20 8 Frequency + exposure 500
62 15 165 20 25 25.0 20 8 Frequency + exposure 500
63 15 165 20 25 30.0 20 8 Frequency + exposure 500
64 15 165 20 25 35.0 20 8 Frequency + exposure 500
65 20 165 20 25 2.5 20 8 Frequency + exposure 500
66 20 165 20 25 5.0 20 8 Frequency + exposure 500
67 20 165 20 25 10.0 20 8 Frequency + exposure 500
68 20 165 20 25 15.0 20 8 Frequency + exposure 500
69 20 165 20 25 20.0 20 8 Frequency + exposure 500
70 20 165 20 25 25.0 20 8 Frequency + exposure 500
71 20 165 20 25 30.0 20 8 Frequency + exposure 500
72 20 165 20 25 35.0 20 8 Frequency + exposure 500
73 40 165 20 25 2.5 20 8 Frequency + exposure 500
74 40 165 20 25 5.0 20 8 Frequency + exposure 500
75 40 165 20 25 10.0 20 8 Frequency + exposure 500
76 40 165 20 25 15.0 20 8 Frequency + exposure 500
77 40 165 20 25 20.0 20 8 Frequency + exposure 500
78 40 165 20 25 25.0 20 8 Frequency + exposure 500
79 40 165 20 25 30.0 20 8 Frequency + exposure 500
80 40 165 20 25 35.0 20 8 Frequency + exposure 50036



A.3 Scenario 3

sim N N(DTAG) N(SAT) P(SAT) 𝜇 𝜔 Covariates Ns

41 5 0 5 100 165 30 None 500
42 5 1 4 80 165 30 None 500
43 5 2 3 60 165 30 None 500
44 5 3 2 40 165 30 None 500
45 5 4 1 20 165 30 None 500
46 5 5 0 0 165 30 None 500
47 10 0 10 100 165 30 None 500
48 10 2 8 80 165 30 None 500
49 10 4 6 60 165 30 None 500
50 10 6 4 40 165 30 None 500
51 10 8 2 20 165 30 None 500
52 10 10 0 0 165 30 None 500
53 15 0 15 100 165 30 None 500
54 15 3 12 80 165 30 None 500
55 15 6 9 60 165 30 None 500
56 15 9 6 40 165 30 None 500
57 15 12 3 20 165 30 None 500
58 15 15 0 0 165 30 None 500
59 20 0 20 100 165 30 None 500
60 20 4 16 80 165 30 None 500
61 20 8 12 60 165 30 None 500
62 20 12 8 40 165 30 None 500
63 20 16 4 20 165 30 None 500
64 20 20 0 0 165 30 None 500
65 40 0 40 100 165 30 None 500
66 40 8 32 80 165 30 None 500
67 40 16 24 60 165 30 None 500
68 40 24 16 40 165 30 None 500
69 40 32 8 20 165 30 None 500
70 40 40 0 0 165 30 None 500
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A.4 Scenario 4

sim N N(DTAG) N(SAT) P(SAT) 𝜇 𝜎 𝜙 𝛽 𝛼 Covariates Ns

91 5 0 5 100 165 25 20 20 8 Frequency + exposure 500
92 5 1 4 80 165 25 20 20 8 Frequency + exposure 500
93 5 2 3 60 165 25 20 20 8 Frequency + exposure 500
94 5 3 2 40 165 25 20 20 8 Frequency + exposure 500
95 5 4 1 20 165 25 20 20 8 Frequency + exposure 500
96 5 5 0 0 165 25 20 20 8 Frequency + exposure 500
97 10 0 10 100 165 25 20 20 8 Frequency + exposure 500
98 10 2 8 80 165 25 20 20 8 Frequency + exposure 500
99 10 4 6 60 165 25 20 20 8 Frequency + exposure 500
100 10 6 4 40 165 25 20 20 8 Frequency + exposure 500
101 10 8 2 20 165 25 20 20 8 Frequency + exposure 500
102 10 10 0 0 165 25 20 20 8 Frequency + exposure 500
103 15 0 15 100 165 25 20 20 8 Frequency + exposure 500
104 15 3 12 80 165 25 20 20 8 Frequency + exposure 500
105 15 6 9 60 165 25 20 20 8 Frequency + exposure 500
106 15 9 6 40 165 25 20 20 8 Frequency + exposure 500
107 15 12 3 20 165 25 20 20 8 Frequency + exposure 500
108 15 15 0 0 165 25 20 20 8 Frequency + exposure 500
109 20 0 20 100 165 25 20 20 8 Frequency + exposure 500
110 20 4 16 80 165 25 20 20 8 Frequency + exposure 500
111 20 8 12 60 165 25 20 20 8 Frequency + exposure 500
112 20 12 8 40 165 25 20 20 8 Frequency + exposure 500
113 20 16 4 20 165 25 20 20 8 Frequency + exposure 500
114 20 20 0 0 165 25 20 20 8 Frequency + exposure 500
115 40 0 40 100 165 25 20 20 8 Frequency + exposure 500
116 40 8 32 80 165 25 20 20 8 Frequency + exposure 500
117 40 16 24 60 165 25 20 20 8 Frequency + exposure 500
118 40 24 16 40 165 25 20 20 8 Frequency + exposure 500
119 40 32 8 20 165 25 20 20 8 Frequency + exposure 500
120 40 40 0 0 165 25 20 20 8 Frequency + exposure 500
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B Appendix B – Directed acyclic graphs (DAGs)

Bayesian models can be viewed as networks of components, some of which are known and many unknown.
Directed acyclic graphs (DAGs) are diagrammatical representations of these models, often used to sum­
marise and communicate complex hierarchical structures (King et al. 2009). Within a DAG, the data, model
parameters, and their corresponding prior distributions, are all represented as graphical nodes, inter­linked
in a way that appropriately captures the directional relationships between variables.

A B

C D

Figure B1: Directed acyclic graphs showing the structure of the four candidate hierarchical Bayesian mod­
els available under the simulation framework. (A) Scenario 1: no covariates, fixed uncertainty in dose
measurements. (B) Scenario 2: probability of response affected by signal type (MFAS vs LFAS) and expo­
sure history, fixed uncertainty in dose. (C) Scenario 3: no covariates, uncertainty in dose measurements
varies by tag type. (D) Scenario 4: probability of response affected by signal type (MFAS vs LFAS) and
exposure history, uncertainty in dose measurements varies by tag type. Model variables are represented
by circles and constants by boxes. Grey circles denote variables monitored for posterior inference. Black
and grey arrows represent stochastic and deterministic relationships, respectively.
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