221 research outputs found
“<i>I do it because they do it</i>”:social-neutralisation in information security practices of Saudi medical interns
Successful implementation of information security policies (ISP) and IT controls play an important role in safeguarding patient privacy in healthcare organizations. Our study investigates the factors that lead to healthcare practitioners' neutralisation of ISPs, leading to non-compliance. The study adopted a qualitative approach and conducted a series of semi-structured interviews with medical interns and hospital IT department managers and staff in an academic hospital in Saudi Arabia. The study's findings revealed that the MIs imitate their peers' actions and employ similar justifications when violating ISP dictates. Moreover, MI team superiors' (seniors) ISP non-compliance influence MIs tendency to invoke neutralisation techniques. We found that the trust between the medical team members is an essential social facilitator that motivates MIs to invoke neutralisation techniques to justify violating ISP policies and controls. These findings add new insights that help us to understand the relationship between the social context and neutralisation theory in triggering ISP non-compliance
A Study of T Cell Tolerance to the Tumor-Associated Antigen MDM2: Cytokines Can Restore Antigen Responsiveness, but Not High Avidity T Cell Function
BACKGROUND: Most tumor-associated antigens (TAA) currently used for immunotherapy of cancer are also expressed in normal tissues, which may induce tolerance and impair T cell-mediated immunity. However, there is limited information about how physiological expression in normal tissues alters the function of TAA-specific T cells. METHODOLOGY/PRINCIPAL FINDINGS: We used a T cell receptor transgenic model to study how MDM2 expression in normal tissues affects the function of T cells specific for this TAA that is found at high levels in many different types of tumors. We found that some MDM2-specific T cells escaped thymic deletion and persisted in the peripheral T cell pool. When stimulated with antigen, these T cells readily initiated cell division but failed to proliferate and expand, which was associated with a high rate of apoptosis. Both IL-2 and IL-15 efficiently rescued T cell survival and antigen-specific T cell proliferation, while IL-7 and IL-21 were ineffective. Antigen-stimulated T cells showed impaired expression of the effector molecules CD43, granzyme-B and IFN-γ, a defect that was completely restored when T cells were stimulated in the presence of IL-2. In contrast, IL-15 and IL-21 only restored the expression of CD43 and granzyme-B, but not IFN-γ production. Finally, peptide titration experiments with IL-2 rescued T cells indicated that they were of lower avidity than non-tolerant control T cells expressing the same TCR. CONCLUSIONS/SIGNIFICANCE: These data indicate that cytokines can rescue the antigen-specific proliferation and effector function of MDM2-specific T cells, although this does not lead to the recovery of high avidity T cell function. This study sheds light on possible limitations of immunotherapy approaches that target widely expressed TAA, such as MDM2
Skeeter Buster: A Stochastic, Spatially Explicit Modeling Tool for Studying Aedes aegypti Population Replacement and Population Suppression Strategies
Dengue is a viral disease that affects approximately 50 million people annually, and is estimated to result in 12,500 fatalities. Dengue viruses are vectored by mosquitoes, predominantly by the species Aedes aegypti. Because there is currently no vaccine or specific treatment, the only available strategy to reduce dengue transmission is to control the populations of these mosquitoes. This can be achieved by traditional approaches such as insecticides, or by recently developed genetic methods that propose the release of mosquitoes genetically engineered to be unable to transmit dengue viruses. The expected outcome of different control strategies can be compared by simulating the population dynamics and genetics of mosquitoes at a given location. Development of optimal control strategies can then be guided by the modeling approach. To that end, we introduce a new modeling tool called Skeeter Buster. This model describes the dynamics and the genetics of Ae. aegypti populations at a very fine scale, simulating the contents of individual houses, and even the individual water-holding containers in which mosquito larvae reside. Skeeter Buster can be used to compare the predicted outcomes of multiple control strategies, traditional or genetic, making it an important tool in the fight against dengue
IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx?
BACKGROUND: The role of Th2 cells (producing interleukin (IL-)4, IL-5 and IL-13) in allergic asthma is well-defined. A distinct proinflammatory T cell lineage has recently been identified, called Th(17 )cells, producing IL-17A, a cytokine that induces CXCL8 (IL-8) and recruits neutrophils. Neutrophilic infiltration in the airways is prominent in severe asthma exacerbations and may contribute to airway gland hypersecretion, bronchial hyper-reactivity and airway wall remodelling in asthma. AIM: to study the production of IL-17 in asthmatic airways at the mRNA level, and to correlate this with IL-8 mRNA, neutrophilic inflammation and asthma severity. METHODS: We obtained airway cells by sputum induction from healthy individuals (n = 15) and from asthmatic patients (n = 39). Neutrophils were counted on cytospins and IL-17A and IL-8 mRNA expression was quantified by real-time RT-PCR (n = 11 controls and 33 asthmatics). RESULTS: Sputum IL-17A and IL-8 mRNA levels are significantly elevated in asthma patients compared to healthy controls. IL-17 mRNA levels are significantly correlated with CD3γ mRNA levels in asthmatic patients and mRNA levels of IL-17A and IL-8 correlated with each other and with sputum neutrophil counts. High sputum IL-8 and IL-17A mRNA levels were also found in moderate-to-severe (persistent) asthmatics on inhaled steroid treatment. CONCLUSION: The data suggest that Th(17 )cell infiltration in asthmatic airways links T cell activity with neutrophilic inflammation in asthma
Alphavirus replicon particles containing the gene for HER2/neu inhibit breast cancer growth and tumorigenesis
INTRODUCTION: Overexpression of the HER2/neu gene in breast cancer is associated with an increased incidence of metastatic disease and with a poor prognosis. Although passive immunotherapy with the humanized monoclonal antibody trastuzumab (Herceptin) has shown some effect, a vaccine capable of inducing T-cell and humoral immunity could be more effective. METHODS: Virus-like replicon particles (VRP) of Venezuelan equine encephalitis virus containing the gene for HER2/neu (VRP-neu) were tested by an active immunotherapeutic approach in tumor prevention models and in a metastasis prevention model. RESULTS: VRP-neu prevented or significantly inhibited the growth of HER2/neu-expressing murine breast cancer cells injected either into mammary tissue or intravenously. Vaccination with VRP-neu completely prevented tumor formation in and death of MMTV-c-neu transgenic mice, and resulted in high levels of neu-specific CD8(+ )T lymphocytes and serum IgG. CONCLUSION: On the basis of these findings, clinical testing of this vaccine in patients with HER2/neu(+ )breast cancer is warranted
Ablation of TSC2 Enhances Insulin Secretion by Increasing the Number of Mitochondria through Activation of mTORC1
) mice. The present study examines the effects of TSC2 ablation on insulin secretion from pancreatic beta cells. mice and TSC2 knockdown insulin 1 (INS-1) insulinoma cells treated with small interfering ribonucleic acid were used to investigate insulin secretion, ATP content and the expression of mitochondrial genes. mice exhibit hyperinsulinemia due to an increase in the number of mitochondria as well as enlargement of individual beta cells via activation of mTORC1.Activation of mTORC1 by TSC2 ablation increases mitochondrial biogenesis and enhances insulin secretion from pancreatic beta cells
The Function of MoGlk1 in Integration of Glucose and Ammonium Utilization in Magnaporthe oryzae
Hexokinases are conserved proteins functioning in glucose sensing and signaling. The rice blast fungus Magnaporthe oryzae contains several hexokinases, including MoHxk1 (hexokinase) and MoGlk1 (glucokinase) encoded respectively by MoHXK1 and MoGLK1 genes. The heterologous expression of MoGlk1 and MoHxk1 in Saccharomyces cerevisiae confirmed their conserved functions. Disruption of MoHXK1 resulted in growth reduction in medium containing fructose as the sole carbon source, whereas disruption of MoGLK1 did not cause the similar defect. However, the ΔMoglk1 mutant displayed decreased proton extrusion and a lower biomass in the presence of ammonium, suggesting a decline in the utilization of ammonium. Additionally, the MoGLK1 allele lacking catalytic activity restored growth to the ΔMoglk1 mutant. Moreover, the expression of MoPMA1 encoding a plasma membrane H+-ATPase decreased in the ΔMoglk1 mutant that can be suppressed by glucose and G-6-P. Thus, MoGlk1, but not MoHxk1, regulates ammonium utilization through a mechanism that is independent from its catalytic activity
Th17 Cytokines and the Gut Mucosal Barrier
Local immune responses serve to contain infections by pathogens to the gut while preventing pathogen dissemination to systemic sites. Several subsets of T cells in the gut (T-helper 17 cells, γδ T cells, natural killer (NK), and NK-T cells) contribute to the mucosal response to pathogens by secreting a subset of cytokines including interleukin (IL)-17A, IL-17F, IL-22, and IL-26. These cytokines induce the secretion of chemokines and antimicrobial proteins, thereby orchestrating the mucosal barrier against gastrointestinal pathogens. While the mucosal barrier prevents bacterial dissemination from the gut, it also promotes colonization by pathogens that are resistant to some of the inducible antimicrobial responses. In this review, we describe the contribution of Th17 cytokines to the gut mucosal barrier during bacterial infections
The modular systems biology approach to investigate the control of apoptosis in Alzheimer's disease neurodegeneration
Apoptosis is a programmed cell death that plays a critical role during the development of the nervous system and in many chronic neurodegenerative diseases, including Alzheimer's disease (AD). This pathology, characterized by a progressive degeneration of cholinergic function resulting in a remarkable cognitive decline, is the most common form of dementia with high social and economic impact. Current therapies of AD are only symptomatic, therefore the need to elucidate the mechanisms underlying the onset and progression of the disease is surely needed in order to develop effective pharmacological therapies. Because of its pivotal role in neuronal cell death, apoptosis has been considered one of the most appealing therapeutic targets, however, due to the complexity of the molecular mechanisms involving the various triggering events and the many signaling cascades leading to cell death, a comprehensive understanding of this process is still lacking. Modular systems biology is a very effective strategy in organizing information about complex biological processes and deriving modular and mathematical models that greatly simplify the identification of key steps of a given process. This review aims at describing the main steps underlying the strategy of modular systems biology and briefly summarizes how this approach has been successfully applied for cell cycle studies. Moreover, after giving an overview of the many molecular mechanisms underlying apoptosis in AD, we present both a modular and a molecular model of neuronal apoptosis that suggest new insights on neuroprotection for this disease
SOSORT consensus paper: school screening for scoliosis. Where are we today?
This report is the SOSORT Consensus Paper on School Screening for Scoliosis discussed at the 4th International Conference on Conservative Management of Spinal Deformities, presented by SOSORT, on May 2007. The objectives were numerous, 1) the inclusion of the existing information on the issue, 2) the analysis and discussion of the responses by the meeting attendees to the twenty six questions of the questionnaire, 3) the impact of screening on frequency of surgical treatment and of its discontinuation, 4) the reasons why these programs must be continued, 5) the evolving aim of School Screening for Scoliosis and 6) recommendations for improvement of the procedure
- …