10,340 research outputs found
Graph-Facilitated Resonant Mode Counting in Stochastic Interaction Networks
Oscillations in a stochastic dynamical system, whose deterministic
counterpart has a stable steady state, are a widely reported phenomenon.
Traditional methods of finding parameter regimes for stochastically-driven
resonances are, however, cumbersome for any but the smallest networks. In this
letter we show by example of the Brusselator how to use real root counting
algorithms and graph theoretic tools to efficiently determine the number of
resonant modes and parameter ranges for stochastic oscillations. We argue that
stochastic resonance is a network property by showing that resonant modes only
depend on the squared Jacobian matrix , unlike deterministic oscillations
which are determined by . By using graph theoretic tools, analysis of
stochastic behaviour for larger networks is simplified and chemical reaction
networks with multiple resonant modes can be identified easily.Comment: 5 pages, 4 figure
Hierarchically-structured metalloprotein composite coatings biofabricated from co-existing condensed liquid phases
Complex hierarchical structure governs emergent properties in biopolymeric materials; yet, the material processing involved remains poorly understood. Here, we investigated the multi-scale structure and composition of the mussel byssus cuticle before, during and after formation to gain insight into the processing of this hard, yet extensible metal cross-linked protein composite. Our findings reveal that the granular substructure crucial to the cuticle’s function as a wear-resistant coating of an extensible polymer fiber is pre-organized in condensed liquid phase secretory vesicles. These are phase-separated into DOPA-rich proto-granules enveloped in a sulfur-rich proto-matrix which fuses during secretion, forming the sub-structure of the cuticle. Metal ions are added subsequently in a site-specific way, with iron contained in the sulfur-rich matrix and vanadium coordinated by DOPA-catechol in the granule. We posit that this hierarchical structure self-organizes via phase separation of specific amphiphilic proteins within secretory vesicles, resulting in a meso-scale structuring that governs cuticle function
Electromagnetic multipole theory for optical nanomaterials
Optical properties of natural or designed materials are determined by the
electromagnetic multipole moments that light can excite in the constituent
particles. In this work we present an approach to calculate the multipole
excitations in arbitrary arrays of nanoscatterers in a dielectric host medium.
We introduce a simple and illustrative multipole decomposition of the electric
currents excited in the scatterers and link this decomposition to the classical
multipole expansion of the scattered field. In particular, we find that
completely different multipoles can produce identical scattered fields. The
presented multipole theory can be used as a basis for the design and
characterization of optical nanomaterials
Active and passive microwave measurements in Hurricane Allen
The NASA Langley Research Center analysis of the airborne microwave remote sensing measurements of Hurricane Allen obtained on August 5 and 8, 1980 is summarized. The instruments were the C-band stepped frequency microwave radiometer and the Ku-band airborne microwave scatterometer. They were carried aboard a NOAA aircraft making storm penetrations at an altitude of 3000 m and are sensitive to rain rate, surface wind speed, and surface wind vector. The wind speed is calculated from the increase in antenna brightness temperature above the estimated calm sea value. The rain rate is obtained from the difference between antenna temperature increases measured at two frequencies, and wind vector is determined from the sea surface normalized radar cross section measured at several azimuths. Comparison wind data were provided from the inertial navigation systems aboard both the C-130 aircraft at 3000 m and a second NOAA aircraft (a P-3) operating between 500 and 1500 m. Comparison rain rate data were obtained with a rain radar aboard the P-3. Evaluation of the surface winds obtained with the two microwave instruments was limited to comparisons with each other and with the flight level winds. Two important conclusions are drawn from these comparisons: (1) the radiometer is accurate when predicting flight level wind speeds and rain; and (2) the scatterometer produces well behaved and consistent wind vectors for the rain free periods
Enhanced transmission versus localization of a light pulse by a subwavelength metal slit: Can the pulse have both characteristics?
The existence of resonant enhanced transmission and collimation of light
waves by subwavelength slits in metal films [for example, see T.W. Ebbesen et
al., Nature (London) 391, 667 (1998) and H.J. Lezec et al., Science, 297, 820
(2002)] leads to the basic question: Can a light be enhanced and simultaneously
localized in space and time by a subwavelength slit? To address this question,
the spatial distribution of the energy flux of an ultrashort (femtosecond)
wave-packet diffracted by a subwavelength (nanometer-size) slit was analyzed by
using the conventional approach based on the Neerhoff and Mur solution of
Maxwell's equations. The results show that a light can be enhanced by orders of
magnitude and simultaneously localized in the near-field diffraction zone at
the nm- and fs-scales. Possible applications in nanophotonics are discussed.Comment: 5 figure
Total Molecular Gas Masses of Planck - Herschel Selected Strongly Lensed Hyper Luminous Infrared Galaxies
We report the detection of CO(1 - 0) line emission from seven Planck and
Herschel selected hyper luminous (LIR(8-1000um) > 10^13Lsun) infrared galaxies
with the Green Bank Telescope (GBT). CO(1 - 0) measurements are a vital tool to
trace the bulk molecular gas mass across all redshifts. Our results place tight
constraints on the total gas content of these most apparently luminous high-z
star-forming galaxies (apparent IR luminosities of LIR > 10^(13-14) Lsun),
while we confirm their predetermined redshifts measured using the Large
Millimeter Telescope, LMT (zCO = 1.33 - 3.26). The CO(1 - 0) lines show similar
profiles as compared to Jup = 2 -4 transitions previously observed with the
LMT. We report enhanced infrared to CO line luminosity ratios of
= 110 (pm 22) Lsun(K km s^-1 pc^-2)^-1 compared to normal
star-forming galaxies, yet similar to those of well-studied IR-luminous
galaxies at high-z. We find average brightness temperature ratios of =
0.93 (2 sources), = 0.34 (5 sources), and = 0.18 (1 source). The
r31 and r41 values are roughly half the average values for SMGs. We estimate
the total gas mass content as uMH2 = (0.9 - 27.2) x 10^11(alphaCO/0.8)Msun,
where u is the magnification factor and alphaCO is the CO line luminosity to
molecular hydrogen gas mass conversion factor. The rapid gas depletion times
are, on average, tau = 80 Myr, which reveal vigorous starburst activity, and
contrast the Gyr depletion timescales observed in local, normal star-forming
galaxies.Comment: published in MNRAS, 9pages, 5fig
Scattering of Dirac particles from non-local separable potentials: the eigenchannel approach
An application of the new formulation of the eigenchannel method [R.
Szmytkowski, Ann. Phys. (N.Y.) {\bf 311}, 503 (2004)] to quantum scattering of
Dirac particles from non-local separable potentials is presented. Eigenchannel
vectors, related directly to eigenchannels, are defined as eigenvectors of a
certain weighted eigenvalue problem. Moreover, negative cotangents of
eigenphase-shifts are introduced as eigenvalues of that spectral problem.
Eigenchannel spinor as well as bispinor harmonics are expressed throughout the
eigenchannel vectors. Finally, the expressions for the bispinor as well as
matrix scattering amplitudes and total cross section are derived in terms of
eigenchannels and eigenphase-shifts. An illustrative example is also provided.Comment: Revtex, 9 pages, 4 figures, published versio
Achromatizing a liquid-crystal spectropolarimeter: Retardance vs Stokes-based calibration of HiVIS
Astronomical spectropolarimeters can be subject to many sources of systematic
error which limit the precision and accuracy of the instrument. We present a
calibration method for observing high-resolution polarized spectra using
chromatic liquid-crystal variable retarders (LCVRs). These LCVRs allow for
polarimetric modulation of the incident light without any moving optics at
frequencies >10Hz. We demonstrate a calibration method using pure Stokes input
states that enables an achromatization of the system. This Stokes-based
deprojection method reproduces input polarization even though highly chromatic
instrument effects exist. This process is first demonstrated in a laboratory
spectropolarimeter where we characterize the LCVRs and show example
deprojections. The process is then implemented the a newly upgraded HiVIS
spectropolarimeter on the 3.67m AEOS telescope. The HiVIS spectropolarimeter
has also been expanded to include broad-band full-Stokes spectropolarimetry
using achromatic wave-plates in addition to the tunable full-Stokes
polarimetric mode using LCVRs. These two new polarimetric modes in combination
with a new polarimetric calibration unit provide a much more sensitive
polarimetric package with greatly reduced systematic error.Comment: Accepted in PAS
Effect of treatment of periodontitis on incretin axis in obese and non-obese individuals: A cohort study
CONTEXT: Periodontitis confers an increased risk of developing type 2 diabetes and, in patients with obesity, it might interfere with the incretin axis. The effect of periodontal treatment on glucoregulatory hormones remains unknown. OBJECTIVE: To evaluate the effect of periodontal treatment on incretin axis in obese and lean non-diabetic individuals. SETTING: King's College Dental Hospital and Institute, London, UK. PARTICIPANTS AND METHODS: The metabolic profile of obese and BMI-normal individuals affected by periodontitis was studied at baseline, 2 and 6 months after intensive periodontal treatment, by measuring plasma insulin, glucagon, GLP-1 and GIP and markers of systemic inflammation and oxidative stress. MAIN OUTCOME MEASURE(S): Circulating levels of incretins and inflammatory markers. RESULTS: At baseline, periodontal parameters were worse for obese than non-obese; this was accompanied by higher levels of circulating hs-CRP, insulin and GLP-1. The response to periodontal treatment was less favourable in the obese group, without significant variations of hs-CRP or malondialdehyde. Gluco-regulatory hormones changed differently after treatment: while insulin and glucagon did not vary at 2 and 6 months, GLP-1 and GIP significantly increased at 6 months in both groups. In particular, GLP-1 increased more rapidly in obese participants, while the increase of GIP followed similar trends across visits in both groups. CONCLUSIONS: Nonsurgical treatment of periodontitis is associated with increased GLP-1 and GIP levels in non-obese and obese patients; changes in GLP-1 were more rapid in obese participants. This might have positive implications for the metabolic risk of these individuals
Enhanced Transmission of Light and Particle Waves through Subwavelength Nanoapertures by Far-Field Interference
Subwavelength aperture arrays in thin metal films can enable enhanced
transmission of light and matter (atom) waves. The phenomenon relies on
resonant excitation and interference of the plasmon or matter waves on the
metal surface. We show a new mechanism that could provide a great resonant and
nonresonant transmission enhancement of the light or de Broglie particle waves
passed through the apertures not by the surface waves, but by the constructive
interference of diffracted waves (beams generated by the apertures) at the
detector placed in the far-field zone. In contrast to other models, the
mechanism depends neither on the nature (light or matter) of the beams
(continuous waves or pulses) nor on material and shape of the multiple-beam
source (arrays of 1-D and 2-D subwavelength apertures, fibers, dipoles or
atoms). The Wood anomalies in transmission spectra of gratings, a long standing
problem in optics, follow naturally from the interference properties of our
model. The new point is the prediction of the Wood anomaly in a classical
Young-type two-source system. The new mechanism could be interpreted as a
non-quantum analog of the superradiance emission of a subwavelength ensemble of
atoms (the light power and energy scales as the number of light-sources
squared, regardless of periodicity) predicted by the well-known Dicke quantum
model.Comment: Revised version of MS presented at the Nanoelectronic Devices for
Defense and Security (NANO-DDS) Conference, 18-21 June, 2007, Washington, US
- …