11,072 research outputs found
Economic Incentives Versus Command and Control: What's the Best Approach for Solving Environmental Problems?
Now, decades after the first environmental laws were passed in this country, policymakers face many choices when seeking to solve environmental problems. Will taxing polluters for their discharges be more effective than fining them for not meeting certain emissions standards? Will a regulatory agency find it less costly to enforce a ban or oversee a system of tradable permits? Which strategy will reduce a pollutant the quickest? Clearly, there are no "one-size-fits-all" answers. Many factors enter into the decision to favor either policies that lean more toward economic incentives (EI) and toward direct regulation, commonly referred to as command-and-control (CAC) policy. Underlying determinants include a country's governmental and regulatory infrastructure, along with the nature of the environmental problem itself. Even with these contextual factors to consider, we thought it would be useful to compare EI and CAC policies and their outcomes in a real-world setting. To do this, we looked at six environmental problems that the United States and at least one European country dealt with differently (see box on page 14.) For each problem, one approach was more of an EI measure, while the other relied more on CAC. For example, to reduce point-source industrial water pollution, the Netherlands implemented a system of fees for organic pollutants (EI), while the United States established a system of guidelines and permits (CAC). It turned out, in fact, that most policies had at least some elements of both approaches, but we categorized them as EI or CAC based on their dominant features. We then asked researchers who had previously studied these policies on either side of the Atlantic to update or prepare new case studies. We analyzed the 12 case studies (two for each of the six environmental problems) against a list of hypotheses frequently made for or against EI and CAC, such as which instrument is more effective or imposes less administrative burden
(E,E)-N1,N2-Bis(2,6-difluorobenzylidene)ethane-1,2-diamine.
The asymmetric unit of the title compound, C16H12F4N2, comprises half of the potentially bidentate Schiff base ligand, with an inversion centre located at the mid-point of the central C—C bond. The crystal packing is stabilized by intermolecular C—H⋯N and π–π interactions [centroid–centroid distance = 3.6793 (12) Å and interplanar spacing = 3.4999 (7) Å]
The study of comets, part 2
Flyby missions and systematic observations of comets are projected for studying comet nuclei and cometary dust tail structures
The study of comets, part 1
Papers are presented dealing with observations of comets. Topic discussed include: photometry, polarimetry, and astrometry of comets; detection of water and molecular transitions in comets; ion motions in comet tails; determination of comet brightness and luminosity; and evolution of cometary orbits. Emphasis is placed on analysis of observations of comet Kohoutek
Active and passive microwave measurements in Hurricane Allen
The NASA Langley Research Center analysis of the airborne microwave remote sensing measurements of Hurricane Allen obtained on August 5 and 8, 1980 is summarized. The instruments were the C-band stepped frequency microwave radiometer and the Ku-band airborne microwave scatterometer. They were carried aboard a NOAA aircraft making storm penetrations at an altitude of 3000 m and are sensitive to rain rate, surface wind speed, and surface wind vector. The wind speed is calculated from the increase in antenna brightness temperature above the estimated calm sea value. The rain rate is obtained from the difference between antenna temperature increases measured at two frequencies, and wind vector is determined from the sea surface normalized radar cross section measured at several azimuths. Comparison wind data were provided from the inertial navigation systems aboard both the C-130 aircraft at 3000 m and a second NOAA aircraft (a P-3) operating between 500 and 1500 m. Comparison rain rate data were obtained with a rain radar aboard the P-3. Evaluation of the surface winds obtained with the two microwave instruments was limited to comparisons with each other and with the flight level winds. Two important conclusions are drawn from these comparisons: (1) the radiometer is accurate when predicting flight level wind speeds and rain; and (2) the scatterometer produces well behaved and consistent wind vectors for the rain free periods
Study of a small solar probe /sunblazer/. part ii- spacecraft and payload design progress report, jul. 1, 1964 - jun. 30, 1965
Design considerations for Sunblazer solar probe and payloa
The new HiVIS spectropolarimeter and spectropolarimetric calibration of the AEOS telescope
We designed, built, and calibrated a new spectropolarimeter for the HiVIS
spectrograph (R 12000-49000) on the AEOS telescope. We also did a polarization
calibration of the telescope and instrument. We will introduce the design and
use of the spectropolarimeter as well as a new data reduction package we have
developed, then discuss the polarization calibration of the spectropolarimeter
and the AEOS telescope. We used observations of unpolarized standard stars at
many pointings to measure the telescope induced polarization and compare it
with a Zemax model. The telescope induces polarization of 1-6% with a strong
variation with wavelength and pointing, consistent with the altitude and
azimuth variation expected. We then used scattered sunlight as a linearly
polarized source to measure the telescopes spectropolarimetric response to
linearly polarized light. We then made an all-sky map of the telescope's
polarization response to calibrate future spectropolarimetry.Comment: PASP 118, June 200
Towards a systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry
In this paper a systematic approach to the design of bulk isotropic magnetic
metamaterials is presented. The role of the symmetries of both the constitutive
element and the lattice are analyzed. For this purpose it is assumed that the
metamaterial is composed by cubic SRR resonators, arranged in a cubic lattice.
The minimum symmetries needed to ensure an isotropic behavior are analyzed, and
some particular configurations are proposed. Besides, an equivalent circuit
model is proposed for the considered cubic SRR resonators. Experiments are
carried out in order to validate the proposed theory. We hope that this
analysis will pave the way to the design of bulk metamaterials with strong
isotropic magnetic response, including negative permeability and left-handed
metamaterials.Comment: Submitted to Physical Review B, 23 page
Electromagnetic multipole theory for optical nanomaterials
Optical properties of natural or designed materials are determined by the
electromagnetic multipole moments that light can excite in the constituent
particles. In this work we present an approach to calculate the multipole
excitations in arbitrary arrays of nanoscatterers in a dielectric host medium.
We introduce a simple and illustrative multipole decomposition of the electric
currents excited in the scatterers and link this decomposition to the classical
multipole expansion of the scattered field. In particular, we find that
completely different multipoles can produce identical scattered fields. The
presented multipole theory can be used as a basis for the design and
characterization of optical nanomaterials
- …