14 research outputs found

    Minimally Invasive Periodontal Treatment Using the Er,Cr: YSGG Laser. A 2-year Retrospective Preliminary Clinical Study

    Get PDF
    Minimally invasive surgery (MIS) using the erbium, chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser (Waterlase MD, Biolase, Irvine, CA) to treat moderate to advanced periodontal disease is presented as an alternative to conventional therapies. To date, there are few short- or long-term studies to demonstrate the effects of this laser in treating and maintaining periodontal health. Electronic clinical records from 16 patients – total of 126 teeth, with pocket depths ranging from 4 mm to 9 mm – were treated with the same protocol using the Er,Cr:YSGG laser. The mean baseline probing depths (PD) were 5 mm and clinical attachment levels (CAL) were 5 mm in the 4 - 6 mm pretreated laser group. The mean baseline probing depths were 7.5 and 7.6 mm for PD and CAL respectfully in the 7 – 9 mm pretreatment laser group. At the 2 year mark, the average PD was 3.2 ± 1.1 mm for the 4-6 mm pocket group and the 7-9 mm pocket group had a mean PD of 3.7 ± 1.2 mm. mean CAL was 3.1 ± 1.1 mm for the 4-6 mm group and 3.6 ± 1.2 for the 7-9 mm group with an overall reduction of 1.9 mm and 4.0 mm respectively. At one and two years, both groups remained stable with PD comparable to the three-month gains. The CAL measurements at one and two years were also comparable to the three-month gains

    Comparison of transcriptional responses in liver tissue and primary hepatocyte cell cultures after exposure to hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine

    Get PDF
    BACKGROUND: Cell culture systems are useful in studying toxicological effects of chemicals such as Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), however little is known as to how accurately isolated cells reflect responses of intact organs. In this work, we compare transcriptional responses in livers of Sprague-Dawley rats and primary hepatocyte cells after exposure to RDX to determine how faithfully the in vitro model system reflects in vivo responses. RESULTS: Expression patterns were found to be markedly different between liver tissue and primary cell cultures before exposure to RDX. Liver gene expression was enriched in processes important in toxicology such as metabolism of amino acids, lipids, aromatic compounds, and drugs when compared to cells. Transcriptional responses in cells exposed to 7.5, 15, or 30 mg/L RDX for 24 and 48 hours were different from those of livers isolated from rats 24 hours after exposure to 12, 24, or 48 mg/Kg RDX. Most of the differentially expressed genes identified across conditions and treatments could be attributed to differences between cells and tissue. Some similarity was observed in RDX effects on gene expression between tissue and cells, but also significant differences that appear to reflect the state of the cell or tissue examined. CONCLUSION: Liver tissue and primary cells express different suites of genes that suggest they have fundamental differences in their cell physiology. Expression effects related to RDX exposure in cells reflected a fraction of liver responses indicating that care must be taken in extrapolating from primary cells to whole animal organ toxicity effects

    A synthesis of the ecological processes influencing variation in life history and movement patterns of American eel: towards a global assessment

    Full text link
    corecore