275 research outputs found

    The Role of Frame Selection and Bispectrum Phase Reconstruction for Speckle Imaging Through Atmospheric Turbulence

    Get PDF
    Frame selection using quality sharpness metrics have been shown in previous AFIT theses, to be effective in improving the final product of images obtained using adaptive optics. This thesis extends this idea to noncompensated speckle image data. Speckle image reconstruction is simulated with and without frame selection. Speckle images require the processing of hundreds of data frames. Frame selection is a method of reducing the amount of data required to reconstruct the image. A collection of short exposure image data frames of a single object are sorted based on sharpness metrics. Only the highest quality frames are retained and processed for the final image. The phase spectrum is reconstructed using the bispectrum technique. The benefits of frame selection for point (star) sources and extended (satellite) sources are examined by comparing composite image data with and without frame selection. The resulting power spectrum is evaluated through the SNR gain measurements, and the resulting phase spectrum is evaluated by measuring the phase error between the composite image and the object. In both cases, the results show that frame selection does not improve the power or the phase spectrums. For point sources, results show frame selection causes slight decrease in performance. For extended sources, the change in performance is insignificant. However, frame selection does offer a means for data reduction without significantly reducing performance in a wide variety of target brightness levels and atmospheric turbulence conditions

    Silicon Microleaks for Inlets of Mass Spectrometers

    Get PDF
    Microleaks for inlets of mass spectrometers used to analyze atmospheric gases can be fabricated in silicon wafers by means of photolithography, etching, and other techniques that are commonly used in the manufacture of integrated circuits and microelectromechanical systems. The microleaks serve to limit the flows of the gases into the mass-spectrometer vacuums to specified very small flow rates consistent with the capacities of the spectrometer vacuum pumps. There is a need to be able to precisely tailor the dimensions of each microleak so as to tailor its conductance to a precise low value. (As used here, "conductance" signifies the ratio between the rate of flow in the leak and the pressure drop from the upstream to the downstream end of the leak.) To date, microleaks have been made, variously, of crimped metal tubes, pulled glass tubes, or frits. Crimped-metal and pulled-glass-tube microleaks cannot readily be fabricated repeatably to precise dimensions and are susceptible to clogging with droplets or particles. Frits tend to be differentially chemically reactive with various gas constituents and, hence, to distort the gas mixtures to be analyzed. The present approach involving microfabrication in silicon largely overcomes the disadvantages of the prior approaches

    Systems, methods, and apparatus of a low conductance silicon micro-leak for mass spectrometer inlet

    Get PDF
    Systems, methods and apparatus are provided through which in some embodiments a mass spectrometer micro-leak includes a number of channels fabricated by semiconductor processing tools and that includes a number of inlet holes that provide access to the channels

    Systems, Methods, and Apparatus of a Low Conductance Silicon Micro-Leak for Mass Spectrometer Inlet

    Get PDF
    Systems, methods and apparatus are provided through which in some embodiments a mass spectrometer micro-leak includes a number of channels fabricated by semiconductor processing tools and that includes a number of inlet holes that provide access to the channels

    Modal Gating of Human CaV2.1 (P/Q-type) Calcium Channels: I. The Slow and the Fast Gating Modes and their Modulation by β Subunits

    Get PDF
    The single channel gating properties of human CaV2.1 (P/Q-type) calcium channels and their modulation by the auxiliary β1b, β2e, β3a, and β4a subunits were investigated with cell-attached patch-clamp recordings on HEK293 cells stably expressing human CaV2.1 channels. These calcium channels showed a complex modal gating, which is described in this and the following paper (Fellin, T., S. Luvisetto, M. Spagnolo, and D. Pietrobon. 2004. J. Gen. Physiol. 124:463–474). Here, we report the characterization of two modes of gating of human CaV2.1 channels, the slow mode and the fast mode. A channel in the two gating modes differs in mean closed times and latency to first opening (both longer in the slow mode), in voltage dependence of the open probability (larger depolarizations are necessary to open the channel in the slow mode), in kinetics of inactivation (slower in the slow mode), and voltage dependence of steady-state inactivation (occurring at less negative voltages in the slow mode). CaV2.1 channels containing any of the four β subtypes can gate in either the slow or the fast mode, with only minor differences in the rate constants of the transitions between closed and open states within each mode. In both modes, CaV2.1 channels display different rates of inactivation and different steady-state inactivation depending on the β subtype. The type of β subunit also modulates the relative occurrence of the slow and the fast gating mode of CaV2.1 channels; β3a promotes the fast mode, whereas β4a promotes the slow mode. The prevailing mode of gating of CaV2.1 channels lacking a β subunit is a gating mode in which the channel shows shorter mean open times, longer mean closed times, longer first latency, a much larger fraction of nulls, and activates at more positive voltages than in either the fast or slow mode

    Predicting the Location of Glioma Recurrence After a Resection Surgery

    Get PDF
    International audienceWe propose a method for estimating the location of glioma recurrence after surgical resection. This method consists of a pipeline including the registration of images at different time points, the estimation of the tumor infiltration map, and the prediction of tumor regrowth using a reaction-diffusion model. A data set acquired on a patient with a low-grade glioma and post surgery MRIs is considered to evaluate the accuracy of the estimated recurrence locations found using our method. We observed good agreement in tumor volume prediction and qualitative matching in regrowth locations. Therefore, the proposed method seems adequate for modeling low-grade glioma recurrence. This tool could help clinicians anticipate tumor regrowth and better characterize the radiologically non-visible infiltrative extent of the tumor. Such information could pave the way for model-based personalization of treatment planning in a near future

    The Composition of Titan's Lower Atmosphere and Simple Surface Volatiles as Measured by the Cassini-Huygens Probe Gas Chromatograph Mass Spectrometer Experiment

    Get PDF
    The Cassini-Huygens Probe Gas Chromatograph Mass Spectrometer (GCMS) determined the composition of the Titan atmosphere from ~140km altitude to the surface. After landing, it returned composition data of gases evaporated from the surface. Height profiles of molecular nitrogen (N2), methane (CH4) and molecular hydrogen (H2) were determined. Traces were detected on the surface of evaporating methane, ethane (C2H6), acetylene (C2H2), cyanogen (C2N2) and carbon dioxide (CO2). The methane data showed evidence that methane precipitation occurred recently. The methane mole fraction was (1.48+/-0.09) x 10(exp -2) in the lower stratosphere (139.8 km to 75.5 km) and (5.65+/-0.18) x 10(exp -2) near the surface (6.7 km to the surface). The molecular hydrogen mole fraction was (1.01+/-0.16) x 10(exp -3) in the atmosphere and (9.90+/-0.17) x 10(exp -4) on the surface. Isotope ratios were 167.7+/-0.6 for N-14/N-15 in molecular nitrogen, 91.1+/-1.4 for C-12/C-13 in methane and (1.35+/-0.30) x 10(exp -4) for D/H in molecular hydrogen. The mole fractions of Ar-36 and radiogenic Ar-40 are (2.1+/-0.8) x 10(exp -7) and (3.39 +/-0.12) x 10(exp -5) respectively. Ne-22 has been tentatively identified at a mole fraction of (2.8+/-2.1) x 10(exp -7) Krypton and xenon were below the detection threshold of 1 x 10(exp -8) mole fraction. Science data were not retrieved from the gas chromatograph subsystem as the abundance of the organic trace gases in the atmosphere and on the ground did not reach the detection threshold. Results previously published from the GCMS experiment are superseded by this publication

    The Genome Sequence DataBase: towards an integrated functional genomics resource

    Get PDF
    During 1998 the primary focus of the Genome Sequence DataBase (GSDB; http://www.ncgr.org/gsdb ) located at the National Center for Genome Resources (NCGR) has been to improve data quality, improve data collections, and provide new methods and tools to access and analyze data. Data quality has been improved by extensive curation of certain data fields necessary for maintaining data collections and for using certain tools. Data quality has also been increased by improvements to the suite of programs that import data from the International Nucleotide Sequence Database Collaboration (IC). The Sequence Tag Alignment and Consensus Knowledgebase (STACK), a database of human expressed gene sequences developed by the South African National Bioinformatics Institute (SANBI), became available within the last year, allowing public access to this valuable resource of expressed sequences. Data access was improved by the addition of the Sequence Viewer, a platform-independent graphical viewer for GSDB sequence data. This tool has also been integrated with other searching and data retrieval tools. A BLAST homology search service was also made available, allowing researchers to search all of the data, including the unique data, that are available from GSDB. These improvements are designed to make GSDB more accessible to users, extend the rich searching capability already present in GSDB, and to facilitate the transition to an integrated system containing many different types of biological data

    Laser vision : lidar as a transformative tool to advance critical zone science

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hydrology and Earth System Sciences 19 (2015): 2881-2897, doi:10.5194/hess-19-2881-2015.Observation and quantification of the Earth's surface is undergoing a revolutionary change due to the increased spatial resolution and extent afforded by light detection and ranging (lidar) technology. As a consequence, lidar-derived information has led to fundamental discoveries within the individual disciplines of geomorphology, hydrology, and ecology. These disciplines form the cornerstones of critical zone (CZ) science, where researchers study how interactions among the geosphere, hydrosphere, and biosphere shape and maintain the "zone of life", which extends from the top of unweathered bedrock to the top of the vegetation canopy. Fundamental to CZ science is the development of transdisciplinary theories and tools that transcend disciplines and inform other's work, capture new levels of complexity, and create new intellectual outcomes and spaces. Researchers are just beginning to use lidar data sets to answer synergistic, transdisciplinary questions in CZ science, such as how CZ processes co-evolve over long timescales and interact over shorter timescales to create thresholds, shifts in states and fluxes of water, energy, and carbon. The objective of this review is to elucidate the transformative potential of lidar for CZ science to simultaneously allow for quantification of topographic, vegetative, and hydrological processes. A review of 147 peer-reviewed lidar studies highlights a lack of lidar applications for CZ studies as 38 % of the studies were focused in geomorphology, 18 % in hydrology, 32 % in ecology, and the remaining 12 % had an interdisciplinary focus. A handful of exemplar transdisciplinary studies demonstrate lidar data sets that are well-integrated with other observations can lead to fundamental advances in CZ science, such as identification of feedbacks between hydrological and ecological processes over hillslope scales and the synergistic co-evolution of landscape-scale CZ structure due to interactions amongst carbon, energy, and water cycles. We propose that using lidar to its full potential will require numerous advances, including new and more powerful open-source processing tools, exploiting new lidar acquisition technologies, and improved integration with physically based models and complementary in situ and remote-sensing observations. We provide a 5-year vision that advocates for the expanded use of lidar data sets and highlights subsequent potential to advance the state of CZ science.The workshop forming the impetus for this paper was funded by the National Science Foundation (EAR 1406031). Additional funding for the workshop and planning was provided to S. W. Lyon by the Swedish Foundation for International Cooperation in Research and Higher Education (STINT grant no. 2013-5261). A. A. Harpold was supported by an NSF fellowship (EAR 1144894)

    The technologies of isolation: apocalypse and self in Kurosawa Kiyoshi's Kairo

    Get PDF
    In this investigation of the Japanese film Kairo, I contemplate how the horrors present in the film relate to the issue of self, by examining a number of interlocking motifs. These include thematic foci on disease and technology which are more intimately and inwardly focused that the film's conclusion first appears to suggest. The true horror here, I argue, is ontological: centred on the self and its divorcing from the exterior world, especially founded in an increased use of and reliance on communicative technologies. I contend that these concerns are manifested in Kairo by presenting the spread of technology as disease-like, infecting the city and the individuals who are isolated and imprisoned by their urban environment. Finally, I investigate the meanings of the apocalypse, expounding how it may be read as hopeful for the future rather than indicative of failure or doom
    corecore