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Abstract. We propose a method for estimating the location of glioma
recurrence after surgical resection. This method consists of a pipeline
including the registration of images at different time points, the estima-
tion of the tumor infiltration map, and the prediction of tumor regrowth
using a reaction-diffusion model. A data set acquired on a patient with
a low-grade glioma and post surgery MRIs is considered to evaluate the
accuracy of the estimated recurrence locations found using our method.
We observed good agreement in tumor volume prediction and qualitative
matching in regrowth locations. Therefore, the proposed method seems
adequate for modeling low-grade glioma recurrence. This tool could help
clinicians anticipate tumor regrowth and better characterize the radiolog-
ically non-visible infiltrative extent of the tumor. Such information could
pave the way for model-based personalization of treatment planning in
a near future.

1 Introduction

Glioma surgical resection has shown to be a critical therapeutic modality and is
usually the first type of therapy given to patients. Resections are part of a stan-
dard treatment that has demonstrated increased patients’ survival time [14].
However, gliomas are a diffuse, infiltrative and resilient form of brain cancer.
Most low-grade glioma patients have a tumor recurrence after the first tumor
resection. The tumor tends to reoccur most often immediately adjacent to the
site of resection despite how extensive the resection [15]. Treatment then includes
a second surgery, chemotherapy or radiation therapy, and there is no consensus
regarding the best option in this setting. We present a biomathematical tool that
would estimate the radiologically non-visible part of the tumor from a longitu-
dinal set of images. Such virtual imaging could potentially guide the clinician in
the decision making process (intuitively, surgery should be prefered for a tumor
without a large non-visible extent, i.e., the so called ”bulky” tumors).

Mathematicians and computer scientists have proposed various methods to
tackle portions of this problem [2, 5–7, 9, 12, 13, 16, 18]. Clatz et al. [1] and Jbabdi
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et al. [8] proposed DTIs construction methods that estimate the tumor cell
diffusion in white matter based on water diffusion in white matter. Konukoglu
et al. [9] built upon these models to personalize a tumor growth model to estimate
the product of dw,g ∗ ρ (tumor diffusion in white and gray matter multiplied by
the tumor proliferation rate). These models allow us to reasonably capture the
progression of a tumor for a given patient before a resection or therapy.

The latest work on modeling glioma regrowth following brain tumor surgery
was by Swanson et al. [16]. They developed a 3D model of tumor growth ac-
counting for the heterogeneity of brain tissue. In a post mortem study, they
investigated the effectiveness of using different types of brain resections. How-
ever, their model was limited to personalization using patient T1 Gad and T2
MRIs, without taking into account the anisotropy in white matter fiber tracts
visible in diffusion tensor imaging (DTI). In addition, they ran their simulations
on virtual controls instead of on patient data.

The pipeline approach that we present in this paper introduces several new
features. First, the 3-D simulation results from using our pipeline estimates the
most likely location of tumor progression after surgery since tumors do not typ-
ically grow at the same rate in all directions. Tumors grow faster in the white
matter than in the gray matter of the brain [4]. Therefore, simulating future tu-
mor growth would be very helpful for therapy planning. Second, it estimates the
profile of the tumor regrowth, thus informing about the radiologically non-visible
extent of the tumor. Third, the simulation results from using our pipeline helps
to differentiate hyper-intense voxels between scarring tissue, edema or tumor re-
currence. The areas bordering the resection cavity could be flagged as high and
low risk of tumor recurrence areas. Our problem requires solving complex reg-
istration problems between pre-op and post-op, combining a tail extrapolation
algorithm (to estimate the invisible part of the tumor) with a tumor progression
algorithm (to predict future extension). To our knowledge, modeling tumor re-
currence after a brain tumor resection using a patient DTI and patient data has
not been done before.

This paper is organized into four sections. In Section 2, we describe a method
for estimating the location of glioma recurrence. In Section 3, we present the
results of our experiments, which show that this method is feasible. In Section
4, we discuss these results and future work.

2 Materials and Method

The proposed method for estimating the location of glioma recurrence after a
resection consists of several interconnected steps. The first step entails segment-
ing the images. The second step consists of a sequence of registrations. The third
step is estimating the tumor’s infiltration tail on the date of surgery, and the
fourth step uses a simulation method to predict the location of tumor regrowth
at future time instances. The fifth step allows us to tell if the tumor is a bulky
or diffuse tumor. Both the tail extrapolation algorithm and the prediction algo-



rithm use the same model framework. We tested the proposed approach on data
from a clinical study.

Model Framework. Tracqui et al. [17] proposed using reaction-diffusion-based
growth models in the form of the Fisher Kolmogorov equation (FK):

∂u

∂t
= ∇ · (D(x)∇u)︸ ︷︷ ︸

Diffusion Term

+ ρ · u · (1− u)︸ ︷︷ ︸
Logistic Reaction Term

; η∂ω · (D∇u) = 0︸ ︷︷ ︸
Boundary Condition

(1)

where u is the tumor cell density, D is the diffusion tensor for tumor cells
using the tumor diffusion tensor construction method described below, ρ is the
proliferation rate and η∂ω are the normal directions of the boundaries of the
brain surface.

To use this framework, we need a tensor image constructed from a DTI to
form D(x), an estimate on parameter values (dw, dg, ρ), and segmentations of
several areas of the brain. dw and dg are scalars that multiply the diffusion
tensors.

Fig. 1. Day -3 DTI: (1) anisotropic white matter tensors and (2) isotropic gray matter
tensors. Region of red box in Figure 2.

There are several tensor construction methods that have been proposed to
model anisotropic diffusion [1, 8]. We used a tensor construction method, pro-
posed by Clatz et al. [1], that uses global scaling on the DTI,

D(x) =

{
dgI if x is in grey matter
dwDwater if x is in white matter

(2)

where D(x) is the inhomogeneous diffusion term, which takes into account
that tumor cells are thought to move faster along anisotropic white matter fiber



tracts, estimated by dwDwater, than in isotropic gray matter dgI. Dwater is the
water diffusion tensor in the brain measured by the DTI and I is the identity
matrix which can be seen as an isotropic diffusion tensor (see Figure 1).

Estimating the parameter values is detailed in the Optimizing dw and ρ
Algorithm paragraph.

Assumption. Gliomas appear as hyper-intense voxels in Flair MRIs in which
edema appears bright. We assume that where there is edema, there is 20% or
more tumor cell density threshold of visibility. In reality, there might be edema
without tumor cells close by and vice versa. Tracqui et al. [17] proposed 40%
maximal tumor cell density to be visible in T2 MRIs, Konukoglu et al. [9] used
Tracqui’s value, and Swanson et al. [16] used a value of 2%. Menze et al. [13]
suggested the maximal tumor cell density that is visible in Flair MRIs to be 9.5%.
We chose the tumor cell density threshold of visibility value as 20% because it is
an intermediate value in literature for T2 MRIs, which includes Flair. Currently,
Flair is the imaging modality that shows the most glioma tumor cell density
threshold of visibility extents, although distinction with scar tissue or edema is
not possible with this sequence.

Data. Our data consists of a current patient with a supra-complete resection
and long post-operation (post-op) follow-ups, complements of our collaborating
neurosurgeon with informed consent from the patient. It is difficult to acquire
this type of longitudinal data, particularly due to limited availability of DTIs.
For this reason, the pipeline was only tested on 1 data set. However, this is
the first time this data set is being used for research and is not the same data
set used by Konukoglu et al. [9] and Clatz et al. [1]. This patient had MRIs
acquired on three different dates before surgery and three dates after surgery
(see Figure 1). The tumor, resection cavity and tumor regrowth for all of the
dates were segmented by the neurosurgeon from Flair MRIs.

The voxel size of our MRIs range from 0.5 x 0.5 x 2.0 mm3 to 0.5 x 0.5 x
5.5 mm3. All images were re-sampled to be 1 x 1 x 1 mm3 by resampling the
baseline using an in house tool and then registering all images (see Figure 3) to
the baseline.

Interval from MRIs
Surgery Date in Days Modalities

-49 Flair
-3 DTI
-1 T1 & Flair
+1 Flair
+74 T1 & Flair
+172 T1 & Flair

Table 1. Patient MRI acquisition dates.



(a) Day -1 (b) Day +1 (c) Day +74 (d) Day +172

Fig. 2. Patient registered Flair MRIs axial views. (a) Hyper-intense region that was
considered tumor before resection on Day 0. Red box displays the area shown in Fig-
ure 1. (b) Distortion in the resection cavity. Hyper-intense regions were considered
scar tissue or hemorrhages caused by surgery for this date. (c) and (d) exhibits hyper-
intense regions which could be scar tissue, hemorrhages or tumor recurrence. It can
be seen with these images that it is not possible to classify these hyper-intense regions
and decipher if the tumor recurrence is a bulky or diffuse-type recurring tumor.

Segmentation. The areas of the brain that need to be segmented to clearly define
their boundaries are the white and gray matters, the cerebrospinal fluid (CSF)
and the tumor at each time point.

The segmentations of white and gray matter are used to mark out the in-
homogeneous tissue boundaries used by dw and dg. The CSF segmentation is
used to define the no flux boundary conditions of the model, i.e., tumor cells
cannot enter these masks. To create these segmentations we thresholded white
matter and brain parenchyma (white matter + gray matter) probability maps
from MNI 152 (Atlas) [3] into binary masks, which recovered all of the necessary
sulci structure and separated lobes. This conversion was achieved with the help
of the neurosurgeon, who decided the best threshold values for the CSF, gray
and white matter probability maps.

The tumor segmentations can be used for three purposes. First, a tumor
segmentation is used as the starting boundary where the tumor growth simula-
tion begins. Second, two tumor segmentations at two different time points can
be used in a minimization algorithm to find the FK parameters: dw, dg, and
ρ. Third, the following acquisition time point tumor segmentations are used to
validate that the simulation results, which were grown from the first time point
tumor segmentation, were reasonable.

Registration. The registration sequence employed has several interrelated steps
(see Figure 3). The most important part of our registration pipeline is the method
we use for nonlinear registration of the images, where there exists no one-to-one
correspondence between both images due to the tumor resection or growth. The
non-linear deformation between the pre-op images and the post-op images can
be assessed with the ventricles swelling and brain tissue shifting position after
surgery (even several months after surgery). The idea of the nonlinear registra-
tion algorithm employed is to use local confidence weights and to model patho-
logical regions with zero confidence. Lamecker et al. [10] added this algorithm as
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Fig. 3. Registration pipeline where all images are registered to the baseline. R stands
for rigid, A for affine and NL for non-linear registration using a mask. In the non-linear
registration we used an inpainting step to register the voxels covered by the mask.

an extension to the efficient and publicly available diffeomorphic demons regis-
tration framework. The algorithm requires a mask to cover the areas that cannot
be matched between the images (i.e., resection cavity plus tumor volume). This
mask volume is excluded from the registration. An inpainting step is used to
estimate the registration in the areas covered by the mask.

The registration sequence can be divided into two parts: (1) registration of
the atlas-based white matter and brain segmentations (segmentation details are
in the Segmentation paragraph), and (2) registration of all patient images and
segmentations to the baseline MRI. This registration sequence is depicted in
Figure 3 and the results can be seen in Figure 2.

Registering the atlas-based white matter and brain segmentations required
two steps. First, we non-linearly registered the Atlas T1 MRI to the patient’s
baseline MRI (Day -1 T1 re-sampled). Lastly, we applied this displacement field
transformation to the white matter and brain binary segmentations.

Registering all of the patient images and segmentations involved three main
steps. First, we rigidly registered all pre-op MRIs to the baseline. Next, we
removed the skull and did histogram matching on the post-op T1 MRIs before
non-linearly registering them to the baseline (the manually segmented mask
consisted of the combined pre-op Day -1 tumor and post-op Day +74 resection
cavity). Finally, we applied the transformations found registering the post-op T1
MRIs to the post-op Flair MRIs and segmentations.

Tail Extrapolation Algorithm. The third step in the method we are propos-
ing uses the FK equation and the tensor construction method. Konukoglu et
al. [9] proposed a static model to overcome the problem of estimating the tumor
infiltration tail by extrapolating the tumor invasion margins. The non-linear re-
action term in Equation 1 is linearized around u = 0 and the tail distribution
is shown to be asymptotically described by a Hamilton-Jacobi equation of the
tumor cell density function. Using a Fast Marching method, an efficient algo-
rithm was proposed that estimates the tumor cell invasion profile outside the
visible boundaries in MRIs. For this step, we used the neurosurgeon’s Day -1
rigidly registered tumor segmentation, the non-linearly registered white matter
and brain segmentations, the rigidly registered DTI, and parameters dw, dg and
ρ (see Optimizing dw and ρ Algorithm paragraph for FK parameter choice). As



the initial condition to this model, we make the assumption of 20% tumor cell
density threshold of visibility (see Assumption paragraph).

Prediction Algorithm. For the fourth step in our method we used this estimated
tumor infiltration tail as the initial condition to the FK model (developed by
Clatz [1] and Konukoglu et al. [9]) to simulate the location and predicted tumor
cell density of recurrence for a given date [1, 9]. This is done by propagating u
by the time defined from MRI acquisition dates. We used two acquisition dates
before surgery and one after surgery (-49, -1 and +74) to predict where the
tumor will grow at the 4th acquisition date (2nd after surgery). The dw, dg and
ρ parameters that were estimated with the first three acquisition times were
used.

Optimizing dw and ρ Algorithm. The fifth step in our method was determining
which dw and ρ fit each particular patient’s data (personalization) since previous
algorithms were only able to estimate the velocity constant (v = 2

√
ρdw), but

not dw and ρ separately [9, 12]. Different values of dw and ρ, where v is the
same, produce very different overall tumor shapes [9]. For example, if dw/ρ is
low, the tumor is said to be bulky (not very infiltrative); where as if dw/ρ is
high, the tumor is said to be diffuse. We created a tool to sweep through the
physically feasible values, proposed by Harpold et al. [6], of dw and ρ keeping
dw ∗ρ constant. There are two parts to this process: find v, and solve for dw and
ρ.

First, finding v can be done in two different ways. Konukoglu et al. [9] pro-
posed a minimization method for estimating the FK parameters: dw*ρ (differen-
tial speed), dg, T0 (initial tumor start date). However, for this patient, the tumor
does not visibly change volume or shape between Day -49 and Day -1 (possibly
due to an overestimation of the tumor extent at Day -49, which was performed
soon after a generalized seizure). We used the second way of finding v, which
was to assume that the diameter velocity of the tumor was 4 mm/year, which
was proposed by Mandonnet et al. in [11] for low grade glioma tumor growth.

Then, to solve for dw and ρ, we swept through the possible parameter values
of dw (4 to 10 mm2/year) and ρ (0.4 to 1.0 1/year), keeping v constant at
4 mm/year, iterating through steps 2 and 3 of our method. We started the
Tail Extrapolation Algorithm from Flair segmentation Day -1 with resection
cavity removed from the image to compare with Flair segmentation Day + 74.
We found the value of dw = 6 mm2/year and ρ = 0.667 1/year to be the most
appropriate by qualitative analysis. These values of dw and ρ were used to predict
Flair segmentation Day +172 and the results are discussed in the Results section
(also see Figure 4).

The parameters that determine the shape of the tumor, which are perceptible
only locally in white matter, are the tensor construction method and the ratio
dw/dg, where dw/dg = 1 is isotropic growth and dw/dg = 100 is highly anisotropic
growth. There are two ways of finding dg: using a minimization algorithm, such
as the one proposed by Konukoglu et al. [9], or sweeping through the possible
values of dg, once you have found dw and ρ, by iterating through steps 2 and
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Fig. 4. For Day +74, there is an agreement in volume for 3 of the segmentations. For
Day +172, both the neurosurgeon’s estimation of tumor growth and the FK prediction
match in volume.

3 of our method. Since we were not able to use a minimization algorithm on
this patient’s data, due to a likely seizure-induced overestimation of real tumor
size at first MRI, we swept through the the values of dg (1 to 6 mm2/year).
We found dg = 1 mm2/year to be the most appropriate value by qualitative
analysis.

3 Results

In this paper, we have proposed a method to predict where tumor regrowth will
occur for glioma resection patients.

Quantitatively, Figure 4 shows the chronological progression of the patient’s
possible tumor regrowth. Due to the large amount of brain shift plus tumor evo-
lution in the post-op MRIs, the non-linear registration compresses and stretches
the tissues surrounding the resection cavity. For this reason we believe matching
volumes and not surfaces is reasonable. Using overlap measures would imply to
perform voxel to voxel comparison between pre-op and post-op images. This is
a very challenging registration problem due to the large deformations caused
by the tumor removal. As the registration errors are still large in those areas,
we chose to compare the tumor segmentation and prediction by using global
measures (volumes) rather than local measures like overlap. We use two cri-
teria for evaluating our method’s accuracy: the neurosurgeon’s segmentations
and hyper-intense signal segmentations. The hyper-intense signal segmentation
shows all the voxels that could possibly be tumor due to their intensity in the
image. Results show that for Day +74, there is a good volume agreement for 3 of
the segmentations. For Day +172, both the neurosurgeon’s estimation of tumor
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Fig. 5. Compare this figure with Figure 1 and 2. (a) Shows the estimated tumor infil-
tration tail in yellow. This tail cannot be distinguished with current MRI technology.
In (b) and (c), the simulated tumor regrowth predictions are shown in yellow. Observe
that the hyper-intense regions do not exactly cover the same regions as were flagged
by the neurosurgeon (blue). However, both areas are covered by the prediction of 1%
tumor infiltration.

growth and the FK simulated prediction (thresholded at 20% tumor infiltration)
match in volume. This demonstrates that the model includes the visible part of
the tumor in its prediction, but also flags areas which are not visible with current
MRI technology (shown in magenta). Additionally, the agreement in volume be-
tween the neurosurgeon’s segmentation and the model’s results signifies that the
tumor location outlined by the neurosurgeon is not a simple function of signal
intensity.

Qualitatively, we show in Figure 5 that our model provides a reasonable
estimate of the tumor infiltration tail after resection. Figures 2 and 1 display
the same axial slice and should be used to aid interpretation of this figure. In
Figure 5(a) we show the estimated tumor infiltration tail that cannot be seen
in MRI images (step 2 of our method). In Figure 5(b) and (c), the predicted
tumor regrowth is displayed in yellow (step 3 of our model). We can see from
Figure 5(a) that the tumor tail (1% tumor infiltration) was not removed with the
brain resection. This tail was the seed of regrowth, which is evident in the Day
+74 and Day +172 MRIs. If we compare Figure 5(b) and (c) with Figure 1, we
can see that the patient’s white matter tensors, which are bordering the resection
cavity, are anisotropic. These tensor’s shape were a large contributor to dictating
the speed and direction in which the tumor was simulated to grow. The green
lines outline the hyper-intense voxels in the Flair MRIs. These regions could be
scarring and/or edema caused by surgery and/or tumor recurrence cell density
above or equal to 20% of maximal cell density. The blue line was classified by the
neurosurgeon as possible tumor. Observe that the hyper-intense regions do not
exactly cover the same regions as were flagged by the neurosurgeon. However,
both areas are covered by the FK simulated prediction at the tumor cell density
threshold of visibility value of 1%.



Depending on the size and resolution of the image, the automated process of
registration, estimating the tumor infiltration map and simulating future tumor
regrowth sites for one future time instance can take about 20 hours on a sin-
gle CPU running at 2.2 GHz. The main time-consuming step is the non-linear
registration with inpainting.

4 Discussion and Conclusion

We presented an approach to predict tumor regrowth after a brain tumor resec-
tion. We used a novel pipeline combining image registration with a static model
for estimating the tumor infiltration tail and a dynamic simulation model for
predicting future tumor regrowth. Our results show that predicting is possible
for future tumor regrowth using a reaction-diffusion-type model that employs a
patient DTI.

The non-linear registration step that we employed was key in making our
method possible. Other non-linear registration methods, such as demons (with-
out extensions) or pyramidal block-matching algorithms that use masks, were
not able to deal with the resection cavity to tumor registration. The non-linear
registration step that we used was designed to work with an atlas to patient reg-
istration in the presence of pathologies in the patient image. Although it worked
quite well for the tumor resection application, we could improve the registration
results if we extended this algorithm to use more specific prior information for
resection images.

In the future, we intend to study more glioma resection patients having re-
growth after surgery using this method. We will study all of the parameter
interactions of our method, as well as explore using other tensor construction
techniques for the tail extrapolation algorithm and prediction algorithm parts
of our method, e.g. Jbabdi et al. [8]. Since glioma growth modeling is patient-
specific, we intend to improve our method and validate it using a large patient
data set. This data set will help us analyze the best way to improve the registra-
tion, minimization of parameters and investigate if the tumor growth rate stays
constant after a tumor resection, as seen previously among numerous patients.
With a large number of patients studied, we will develop a method to predict
more precisely these parameters separately, prior to a glioma resection. This will
enable the model to more precisely predict where the tumor could reoccur after
surgery.
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