2,835 research outputs found
Do the EPR Correlations Pose a Problem for Causal Decision Theory?
We argue that Causal Decision Theory (CDT) is no worse off than Evidential Decision Theory (EDT) in handling entanglement, regardless of one’s preferred interpretation of quantum mechanics. In recent works, Ahmed (2014) and Ahmed and Caulton (2014) have claimed the opposite; we argue that they are mistaken. Bell-type experiments are not instances of Newcomb problems, so CDT and EDT do not diverge in their recommendations. We highlight the fact that a Causal Decision Theorist should take all lawlike correlations into account, including potentially acausal entanglement correlations. This paper also provides a brief introduction to CDT with a motivating “small” Newcomb problem. The main point of our argument is that quantum theory does not provide grounds for favouring EDT over CDT
Do the EPR Correlations Pose a Problem for Causal Decision Theory?
We argue that Causal Decision Theory (CDT) is no worse off than Evidential Decision Theory (EDT) in handling entanglement, regardless of one’s preferred interpretation of quantum mechanics. In recent works, Ahmed (2014) and Ahmed and Caulton (2014) have claimed the opposite; we argue that they are mistaken. Bell-type experiments are not instances of Newcomb problems, so CDT and EDT do not diverge in their recommendations. We highlight the fact that a Causal Decision Theorist should take all lawlike correlations into account, including potentially acausal entanglement correlations. This paper also provides a brief introduction to CDT with a motivating “small” Newcomb problem. The main point of our argument is that quantum theory does not provide grounds for favouring EDT over CDT
Retelling the Myth: Sam Shepard's True West and the Late Henry Moss
Sam Shepard's six family plays have so many striking similarities that one must ask "Is he rewriting the same plays over and over? If so why?" By comparing and contrasting the last play that appears in the cycle, The Late Henry Moss, with one representative of the previous five, True West, I will not only point out that he is indeed writing the same play but I will explain why. Shepard writes the same play six times with the main goal of debunking the myth of the American Family. By retelling his own account, or his own myth, he does away with the lie of a misremembered past that many hold on to and perpetuate by continually telling. When one compares and contrasts the plays many elements continue to appear in all, but the one truth that Shepard clings to is that we must be honest with our past, good or bad. If one comes from a bad childhood or family, trying to escape or deny one's identity or legacy is to fall into madness.Department of Theatr
Assessing factors that may predispose Minnesota farms to wolf depredations on cattle
Wolf (Canis lupus) depredations on livestock cause considerable conflict and expense in Minnesota. Furthermore, claims are made that such depredations are fostered by the type of animal husbandry practiced. Thus, we tried to detect factors that might predispose farms in Minnesota to wolf depredations. We compared results of interviews with 41 cattle farmers experiencing chronic cattle losses to wolves (chronic farms) with results from 41 nearby matched farms with no wolf losses to determine farm characteristics or husbandry practices that differed and that therefore might have affected wolf depredations. We also used a Geographic Information System (GIS) to detect any habitat differences between the 2 types of farms. We found no differences between chronic and matched farms in the 11 farm characteristics and management practices that we surveyed, except that farms with chronic losses were larger, had more cattle, and had herds farther from human dwellings. Habitat types were the same around farms with and without losses. The role of proper carcass disposal as a possible factor predisposing farms to wolf depredations remains unclear
Hook3 is a scaffold for the opposite-polarity microtubule-based motors cytoplasmic dynein-1 and KIF1C.
The unidirectional and opposite-polarity microtubule-based motors, dynein and kinesin, drive long-distance intracellular cargo transport. Cellular observations suggest that opposite-polarity motors may be coupled. We recently identified an interaction between the cytoplasmic dynein-1 activating adaptor Hook3 and the kinesin-3 KIF1C. Here, using in vitro reconstitutions with purified components, we show that KIF1C and dynein/dynactin can exist in a complex scaffolded by Hook3. Full-length Hook3 binds to and activates dynein/dynactin motility. Hook3 also binds to a short region in the "tail" of KIF1C, but unlike dynein/dynactin, this interaction does not activate KIF1C. Hook3 scaffolding allows dynein to transport KIF1C toward the microtubule minus end, and KIF1C to transport dynein toward the microtubule plus end. In cells, KIF1C can recruit Hook3 to the cell periphery, although the cellular role of the complex containing both motors remains unknown. We propose that Hook3's ability to scaffold dynein/dynactin and KIF1C may regulate bidirectional motility, promote motor recycling, or sequester the pool of available dynein/dynactin activating adaptors
Coating for gasifiable carbon-graphite fibers
A thin, uniform, firmly adherent coating of metal gasification catalyst is applied to a carbon-graphite fiber by first coating the fiber with a film-forming polymer containing functional moieties capable of reaction with the catalytic metal ions. Multivalent metal cations such as calcium cross-link the polymer such as a polyacrylic acid to insolubilize the film by forming catalytic metal macro-salt links between adjacent polymer chains. The coated fibers are used as reinforcement for resin composites and will gasify upon combustion without evolving conductive airborne fragments
Decrement Operators in Belief Change
While research on iterated revision is predominant in the field of iterated
belief change, the class of iterated contraction operators received more
attention in recent years. In this article, we examine a non-prioritized
generalisation of iterated contraction. In particular, the class of weak
decrement operators is introduced, which are operators that by multiple steps
achieve the same as a contraction. Inspired by Darwiche and Pearl's work on
iterated revision the subclass of decrement operators is defined. For both,
decrement and weak decrement operators, postulates are presented and for each
of them a representation theorem in the framework of total preorders is given.
Furthermore, we present two sub-types of decrement operators
Microgrids for Improving Manufacturing Energy Efficiency
Thirty-one percent of annual energy consumption in the United States occurs within the industrial sector, where manufacturing processes account for the largest amount of energy consumption and carbon emissions. For this reason, energy efficiency in manufacturing facilities is increasingly important for reducing operating costs and improving profits. Using microgrids to generate local sustainable power should reduce energy consumption from the main utility grid along with energy costs and carbon emissions. Also, microgrids have the potential to serve as reliable energy generators in international locations where the utility grid is often unstable. For this research, a smart microgrid system was designed as part of an innovative load management option to improve energy utilization through active Demand-Side Management (DSM). An intelligent active DSM algorithm was developed to manage the intermittent nature of the microgrid and instantaneous demand of the site loads. The controlling algorithm required two input signals; one from the microgrid indicating the availability of renewable energy and another from the manufacturing process indicating energy use as a percent of peak production. Based on these inputs the algorithm had three modes of operation: normal (business as usual), curtailment (shutting off non-critical loads), and energy storage. The results show that active management of a manufacturing microgrid has the potential for saving energy and money by intelligent scheduling of process loads
A Novel Microgrid Demand-Side Management System for Manufacturing Facilities
Thirty-one percent of annual energy consumption in the United States occurs within the industrial sector, where manufacturing processes account for the largest amount of energy consumption and carbon emissions. For this reason, energy efficiency in manufacturing facilities is increasingly important for reducing operating costs and improving profits. Using microgrids to generate local sustainable power should reduce energy consumption from the main utility grid along with energy costs and carbon emissions. Also, microgrids have the potential to serve as reliable energy generators in international locations where the utility grid is often unstable.
For this research, a manufacturing process that had approximately 20 kW of peak demand was matched with a solar photovoltaic array that had a peak output of approximately 3 KW. An innovative Demand-Side Management (DSM) strategy was developed to manage the process loads as part of this smart microgrid system. The DSM algorithm managed the intermittent nature of the microgrid and the instantaneous demand of the manufacturing process. The control algorithm required three input signals; one from the microgrid indicating the availability of renewable energy, another from the manufacturing process indicating energy use as a percent of peak production, and historical data for renewable sources and facility demand. Based on these inputs the algorithm had three modes of operation: normal (business as usual), curtailment (shutting off non-critical loads), and energy storage.
The results show that a real-time management of a manufacturing process with a microgrid will reduce electrical consumption and peak demand. The renewable energy system for this research was rated to provide up to 13% of the total manufacturing capacity. With actively managing the process loads with the DSM program alone, electrical consumption from the utility grid was reduced by 17% on average. An additional 24% reduction was accomplished when the microgrid and DSM program was enabled together, resulting in a total reduction of 37%. On average, peak demand was reduced by 6%, but due to the intermittency of the renewable source and the billing structure for peak demand, only a 1% reduction was obtained. During a billing period, it only takes one day when solar irradiance is poor to affect the demand reduction capabilities. To achieve further demand reduction, energy storage should be introduced and integrated
- …