3,777 research outputs found

    Room temperature spin relaxation in GaAs/AlGaAs multiple quantum wells

    Get PDF
    We have explored the dependence of electron spin relaxation in undoped GaAs/AlGaAs quantum wells on well width (confinement energy) at 300 K. For wide wells, the relaxation rate tends to the intrinsic bulk value due to the D'yakonov-Perel (DP) mechanism with momentum scattering by phonons. In narrower wells, there is a strong dependence of relaxation rate on well width, as expected for the DP mechanism, but also considerable variation between samples from different sources, which we attribute to differences in sample interface morphology. (C) 1998 American Institute of Physics. [S0003-6951(98)02541-8].</p

    Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature)

    Get PDF
    Reactive gases and aerosols are produced by terrestrial ecosystems, processed within plant canopies, and can then be emitted into the above-canopy atmosphere. Estimates of the above-canopy fluxes are needed for quantitative earth system studies and assessments of past, present and future air quality and climate. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) is described and used to quantify net terrestrial biosphere emission of isoprene into the atmosphere. MEGAN is designed for both global and regional emission modeling and has global coverage with ~1 km<sup>2</sup> spatial resolution. Field and laboratory investigations of the processes controlling isoprene emission are described and data available for model development and evaluation are summarized. The factors controlling isoprene emissions include biological, physical and chemical driving variables. MEGAN driving variables are derived from models and satellite and ground observations. Tropical broadleaf trees contribute almost half of the estimated global annual isoprene emission due to their relatively high emission factors and because they are often exposed to conditions that are conducive for isoprene emission. The remaining flux is primarily from shrubs which have a widespread distribution. The annual global isoprene emission estimated with MEGAN ranges from about 500 to 750 Tg isoprene (440 to 660 Tg carbon) depending on the driving variables which include temperature, solar radiation, Leaf Area Index, and plant functional type. The global annual isoprene emission estimated using the standard driving variables is ~600 Tg isoprene. Differences in driving variables result in emission estimates that differ by more than a factor of three for specific times and locations. It is difficult to evaluate isoprene emission estimates using the concentration distributions simulated using chemistry and transport models, due to the substantial uncertainties in other model components, but at least some global models produce reasonable results when using isoprene emission distributions similar to MEGAN estimates. In addition, comparison with isoprene emissions estimated from satellite formaldehyde observations indicates reasonable agreement. The sensitivity of isoprene emissions to earth system changes (e.g., climate and land-use) demonstrates the potential for large future changes in emissions. Using temperature distributions simulated by global climate models for year 2100, MEGAN estimates that isoprene emissions increase by more than a factor of two. This is considerably greater than previous estimates and additional observations are needed to evaluate and improve the methods used to predict future isoprene emissions

    Critical current degradation in HTS wires due to cyclic mechanical strain

    Get PDF
    HTS wires, which may be used in many devices such as magnets and rotating machines, may be subjected to mechanical strains from electromagnetic, thermal and centripetal forces. In some applications these strains will be repeated several thousand times during the lifetime of the device. We have measured critical current degradation due to repeated strain cycles for both compressive and tensile strains. Results for BSCCO-2223 HTS conductor samples are presented for strain values up to 0.5% and cycle numbers up to and beyond 10/sup 4/

    Plant physiological and environmental controls over the exchange of acetaldehyde between forest canopies and the atmosphere

    Get PDF
    We quantified fine scale sources and sinks of gas phase acetaldehyde in two forested ecosystems in the US. During the daytime, the upper canopy behaved as a net source while at lower heights, reduced emission rates or net uptake were observed. At night, uptake generally predominated throughout the canopies. Net ecosystem emission rates were inversely related to foliar density due to the extinction of light in the canopy and a respective decrease of the acetaldehyde compensation point. This is supported by branch level studies revealing much higher compensation points in the light than in the dark for poplar (&lt;i&gt;Populus deltoides&lt;/i&gt;) and holly oak (&lt;i&gt;Quercus ilex&lt;/i&gt;) implying a higher light/temperature sensitivity for acetaldehyde production relative to consumption. The view of stomata as the major pathway for acetaldehyde exchange is supported by strong linear correlations between branch transpiration rates and acetaldehyde exchange velocities for both species. In addition, natural abundance carbon isotope analysis of gas-phase acetaldehyde during poplar branch fumigation experiments revealed a significant kinetic isotope effect of 5.1&amp;plusmn;0.3&amp;permil; associated with the uptake of acetaldehyde. Similar experiments with dry dead poplar leaves showed no fractionation or uptake of acetaldehyde, confirming that this is only a property of living leaves. We suggest that acetaldehyde belongs to a potentially large list of plant metabolites where stomatal resistance can exert long term control over both emission and uptake rates due to the presence of both source(s) and sink(s) within the leaf which strongly buffer large changes in concentrations in the substomatal airspace due to changes in stomatal resistance. We conclude that the exchange of acetaldehyde between plant canopies and the atmosphere is fundamentally controlled by ambient acetaldehyde concentrations, stomatal resistance, and the compensation point which is a function of light/temperature

    High angular resolution mm- and submm-observations of dense molecular gas in M82

    Get PDF
    Researchers observed CO(7-6), CO(3-2), HCN(3-2) and HCO+(3-2) line emission toward the starburst nucleus of M82 and have obtained an upper limit to H13CN(3-2). These are the first observations of the CO(7-6), HCN(3-2) and HCO+(3-2) lines in any extragalactic source. Researchers took the CO(7-6) spectrum in January 1988 at the Infrared Telescope Facility (IRTF) with the Max Planck Institute for Extraterrestrial Physics/Univ. of California, Berkeley 800 GHz Heterodyne Receiver. In March 1989 researchers used the Institute for Radio Astronomy in the Millimeter range (IRAM) 30 m telescope to observe the CO(3-2) line with the new MPE 350 GHz Superconductor Insulator Superconductor (SIS) receiver and the HCN(3-2) and HCO+(3-2) lines with the (IRAM) 230 GHz SIS receiver (beam 12" FWHM, Blundell et al. 1988). The observational parameters are summarized

    The bi-directional exchange of oxygenated VOCs between a loblolly pine (<I>Pinus taeda</I>) plantation and the atmosphere

    Get PDF
    International audienceUsing new in-situ field observations of the most abundant oxygenated VOCs (methanol, acetaldehyde, acetone, C3/C4 carbonyls, MVK+MAC and acetic acid) we were able to constrain emission and deposition patterns above and within a loblolly pine (Pinus taeda) plantation with a sweetgum (Liquidambar styraciflua) understory. During the day canopy scale measurements showed significant emission of methanol and acetone, while methyl vinyl ketone and methacrolein, acetaldehyde and acetic acid were mainly deposited during the day. All oxygenated compounds exhibited strong losses during the night that could not be explained by conventional dry deposition parameterizations. Accompanying leaf level measurements indicated substantial methanol and acetone emissions from loblolly pine. The exchange of acetaldehyde was more complex. Laboratory measurements made on loblolly pine needles indicated that acetaldehyde may be either emitted or taken up depending on ambient concentrations, with the compensation point increasing exponentially with temperature, and that mature needles tended to emit more acetaldehyde than younger needles. Canopy scale measurements suggested mostly deposition. Short-term (approx. 2 h) ozone fumigation in the laboratory had no detectable impact on post-exposure emissions of methanol and acetone, but decreased the exchange rates of acetaldehyde. The emission of a variety of oxygenated compounds (e.g. carbonyls and alcohols) was triggered or significantly enhanced during laboratory ozone fumigation experiments. These results suggest that higher ambient ozone levels in the future might enhance the biogenic contribution of some oxygenated compounds. Those with sufficiently low vapor pressures may potentially influence secondary organic aerosol growth. Compounds recently hypothesized to be primarily produced in the canopy atmosphere via ozone plus terpenoid-type reactions can also originate from the oxidation reaction of ozone with leaf surfaces and inside the leaf. This needs to be taken into account when scaling up very reactive biogenic compounds

    Loudly sing cuckoo : More-than-human seasonalities in Britain

    Get PDF
    This research was funded by a grant from the Arts and Humanities Research Council, grant number AH/E009573/1.Peer reviewedPostprin

    Volatile organic emissions from the distillation and pyrolysis of vegetation

    No full text
    International audienceLeaf and woody plant tissue (Pinus ponderosa, Eucalyptus saligna, Quercus gambelli, Saccharum officinarum and Oriza sativa) were heated from 30 to 300°C and volatile organic compound (VOC) emissions were identified and quantified. Major VOC emissions were mostly oxygenated and included acetic acid, furylaldehyde, acetol, pyrazine, terpenes, 2,3-butadione, phenol and methanol, as well as smaller emissions of furan, acetone, acetaldehyde, acetonitrile and benzaldehyde. Total VOC emissions from distillation and pyrolysis were on the order of 10 gC/kgC dry weight of vegetation, as much as 33% and 44% of CO2 emissions (gC(VOC)/gC(CO2)) measured during the same experiments, in air and nitrogen atmospheres, respectively. The emissions are similar in identity and quantity to those from smoldering combustion of woody tissue and of different character than those evolved during flaming combustion. VOC emissions from the distillation of pools and endothermic pyrolysis under low turbulence conditions may produce flammable concentrations near leaves and may facilitate the propagation of wildfires. VOC emissions from charcoal production are also related to distillation and pyrolysis; the emissions of the highly reactive VOCs from production are as large as the carbon monoxide emissions
    corecore