6 research outputs found

    Incremental evaluation of coupled cluster dipole polarizabilities

    Get PDF
    In this work we present the first implementation of the incremental scheme for coupled cluster linear-response frequency-dependent dipole polarizabilities. The implementation is fully automated and makes use of the domain-specific basis set approach. The accuracy of the approach is determined on the basis of a test suite of 47 molecules and small clusters. The local approximation in the coupled cluster singles and doubles polarizability exhibits a mean error of 0.02% and a standard deviation of 0.32% when using a third-order incremental expansion. With the proposed approach, it is possible to compute polarizabilities with larger basis sets compared to the canonical implementation and thus it is possible to obtain higher total accuracy. The incremental scheme yields the smallest errors for weakly-bound and quasi-linear systems, while two- and three-dimensional (cage-like) structures exhibit somewhat larger errors as compared to the full test set.Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich

    Comparison of Small Molecule and Polymeric Urethanes, Thiourethanes, and Dithiourethanes: Hydrogen Bonding and Thermal, Physical, and Mechanical Properties

    No full text
    The hydrogen bonding behavior of a homologous series of small molecule and polymeric urethanes, thiourethanes. and dithiourethanes was investigated in solution, melt, and solid states. The relative hydrogen bonding strengths in both small molecule and polymer systems were evaluated, and the results were compared to theoretical calculations of hydrogen bonding strength. The results for NMR and FTIR analysis of the small molecule models indicated that the NH protons on the carbamate and thiocarbamates have greater hydrogen bonding strengths than the NH protons of the dithiocarbamate. The polyurethane and polythiourethanes were found to have approximately equivalent physical and mechanical properties as a result of a similar extent of hydrogen bonding, whereas the polydithiourethane, due to a lower degree of hydrogen bonding, has reduced thermal and mechanical transition temperatures as well as lower hardness values. The polythiourethane and polydithiourethane networks exhibit narrower glass transitions compared to polyurethane networks., apparently the result of an efficient isocyanate/isothiocyanate-thiol reaction with little or no side products. Because of weakness of the C-S bond compared to the C-O bond, thiourethanes and dithiourethanes have lower thermal stability than the corresponding urethanes. Finally, the polythiourethanes and polydithiourethane have higher refractive index values than their polyurethane Counterpart
    corecore