24 research outputs found

    Low Speed Estimation of Sensorless DTC Induction Motor Drive Using MRAS with Neuro Fuzzy Adaptive Controller

    Get PDF
    This paper presents a closed loop Model Reference Adaptive system (MRAS) observer with artificial intelligent Nuero fuzzy controller (NFC) as the adaptation technique to mitigate the low speed estimation issues and to improvise the performance of the Sensorless Direct Torque Controlled (DTC) Induction Motor Drives (IMD). Rotor flux MRAS and reactive power MRAS with NFC is explored and detailed analysis is carried out for low speed estimation. Comparative analysis between rotor flux MRAS and reactive power MRAS with PI as well as NFC as adaptive controller is performed and results are presented in this paper. The comparative analysis among these four speed estimation methods shows that reactive power MRAS with NFC as adaptation mechanism shows reduced speed estimation error and actual speed error at steady state operating conditions when the drive is subjected to low speed operation. Simulation carried out using MATLAB-Simulink software to validate the performance of the drive especially at low speeds with rated and variable load conditions

    Pathway to Sustainability: An Overview of Renewable Energy Integration in Building Systems

    Get PDF
    Decarbonizing the building sector is crucial for mitigating climate change, reducing carbon emissions, and achieving an energy production–consumption balance. This research aims to identify key design principles and strategies to enhance energy savings and analyze the integration potential of renewable energy sources (RES) such as solar, wind, geothermal, and biomass, providing in-depth technical exploration and evaluating current building developments. Moreover, the study also examines recent developments, explicitly focusing on integrating hybrid renewable energy systems, energy storage solutions, and AI-based technological innovations. Through comprehensive analysis and critical evaluation, this research provides valuable insights and practical recommendations for achieving building sustainability and advancing the transition towards a low-carbon built environment

    Sustainable E-fuels: Green hydrogen, methanol and ammonia for carbon-neutral transportation

    Get PDF
    Increasingly stringent sustainability and decarbonization objectives drive investments in adopting environmentally friendly, low, and zero-carbon fuels. This study presents a comparative framework of green hydrogen, green ammonia, and green methanol production and application in a clear context. By harnessing publicly available data sources, including from the literature, this research delves into the evaluation of green fuels. Building on these insights, this study outlines the production process, application, and strategic pathways to transition into a greener economy by 2050. This envisioned transformation unfolds in three progressive steps: the utilization of green hydrogen, green ammonia, and green methanol as a sustainable fuel source for transport applications; the integration of these green fuels in industries; and the establishment of mechanisms for achieving the net zero. However, this research also reveals the formidable challenges of producing green hydrogen, green ammonia, and green methanol. These challenges encompass technological intricacies, economic barriers, societal considerations, and far-reaching policy implications necessitating collaborative efforts and innovative solutions to successfully develop and deploy green hydrogen, green ammonia, and green methanol. The findings unequivocally demonstrate that renewable energy sources play a pivotal role in enabling the production of these green fuels, positioning the global transition in the landscape of sustainable energy

    Nanocomposite cotton fabrics with in situ formed copper nanoparticles using citrus lemon leaf extract as reducing agent

    Get PDF
    Nanocomposite cotton fabrics (NCCFs) with in situ formed copper nanoparticles (CuNPs) using aqueous extraction of citrus lemon leaves as reducing agent have been made. The NCCFs have been analyzed by SEM, FTIR, XRD and TGA techniques and antibacterial test. The CuNPS have been roughly spherical in shape with a mean size in the range of 82-114 nm. The OH and C-OH groups of leaf extract has played an important role in the generation of the CuNPs in the NCCFs as established by the FTIR spectral analysis. The XRD analysis has indicated that the formation of CuNPs in NCCFs lowered the crystallinity of NCCFs. The thermal stability of NCCFs has been lowered by the CuNPs. However, the NCCFs with in situ generated CuNPs exhibited higher antibacterial activity against both gram-negative and gram-positive bacteria and hence can be effectively used as antibacterial wound dressing and hospital bed materials

    A preliminary attempt to reduce total dissolved solids in ground water using different plant parts

    No full text
    The present study is a preliminary attempt to explore plant materials such as Indian gooseberry bark (Phyllanthus emblica), lemon peel (Citrus limon), peanut husk (Arachis hypogaea) and vetiver root (Vetiveria zizanoides) for reducing the total dissolved solids (TDS) in a domestic ground (hard) water. The water samples were collected from bore well in the out skirts of Chennai to screen the TDS, which was around1400ppm (parts per million) using a TDS meter. The selected plant materials were packed in vertical glass columns separately and 50mL of hard water is supplied to the column to switch on the process with the flow rate of 10 ml per minute. The reduction of dissolved solids content in the samples were screened .The %decrease of TDS in the elute water samples are calculated for both first loading and second loading. It is evident that vetiver root has shown a maximum reduction in TDS (55.93%) followed by gooseberry bark (42.14%), lemon peel (42%) and peanut husk (41.14%)

    Antioxidant, Anti-inflammatory and Xanthine oxidase inhibitory Activity of Tephrosia purpurea L

    No full text
    T. purpurea root extract was evaluated for antioxidant, anti-inflammatory, and xanthine oxidase (XO) inhibitory activities. Antioxidant activity was measured using ABTS and FRAP methods, anti-inflammatory activity was measured by Diene-conjugate and β-glucuronidase assay. In vitro XO inhibitory activity was measured by using cow milk xanthine oxidase enzyme. The average antioxidant activity of T. purpurea root extracts (1-2 µg/mL) in the reacting system revealed significant activity viz; 42.2 (ABTS) and 36.5 (FRAP) percent. The anti-inflammatory activities reveled, 45.40 and 70.50 percent inhibition. The result for XO inhibitory activity by plant extracts reveled, 95.5 % inhibition to that, off control (allopurinol) 92 % inhibition. The kinetic parameters of XO inhibition, revealed noncompetitive mode of inhibition, where, Km and Vmax of T. purpurea root extracts (25 to 100 µg/mL)) were,  0.25 mM/mL and 0.040, 0.036, 0.032 and 0.030 (µg/min) while for positive control Km and Vmax is 0.30 mM/mL and 0.045 (µg/min) respectively. Results suggest that, T. purpurea root can be exploited against diseases associated, with free radical formation and xanthine oxidase activity; further by isolation and structural elucidation of active phytochemicals from T. purpurea root

    Nanocomposite cotton fabrics with in situ formed copper nanoparticles using citrus lemon leaf extract as reducing agent

    No full text
    760-765Nanocomposite cotton fabrics (NCCFs) with in situ formed copper nanoparticles (CuNPs) using aqueous extraction of citrus lemon leaves as reducing agent have been made. The NCCFs have been analyzed by SEM, FTIR, XRD and TGA techniques and antibacterial test. The CuNPS have been roughly spherical in shape with a mean size in the range of 82-114 nm. The OH and C-OH groups of leaf extract has played an important role in the generation of the CuNPs in the NCCFs as established by the FTIR spectral analysis. The XRD analysis has indicated that the formation of CuNPs in NCCFs lowered the crystallinity of NCCFs. The thermal stability of NCCFs has been lowered by the CuNPs. However, the NCCFs with in situ generated CuNPs exhibited higher antibacterial activity against both gram-negative and gram-positive bacteria and hence can be effectively used as antibacterial wound dressing and hospital bed materials

    Characterization, thermal and antimicrobial properties of hybrid cellulose nanocomposite films with in-situ generated copper nanoparticles in tamarindus indica nut powder

    No full text
    Hybrid cellulose nanocomposite films (HCNFs) were fabricated using cellulose from cotton linters as the matrix, and varying loadings (5 to 25wt.%) of modified tamarind nut power (TNP) with in situ generated copper nanoparticles as the reinforcing fillers. These hybrid composite films were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and antibacterial tests. The inclusion of modified tamarind nut powder improved the crystallinity of the hybrid nanocomposites by 13%. From the FTIR analysis, it could be ascertained that there was no notable change in the chemical composition of the matrix with the amendment of the filler. Further, the shift in peak intensity with increasing concentration of the filler shows the formation of hydrogen bond between the filler and the matrix. The TGA analysis revealed that the degradation temperature of hybrid nanocomposites increased until HCNFs with 15wt.% modified tamarind nut powder. The hybrid nanocomposites exhibited better antibacterial properties against all the pathogens used in the study. These hybrid nanocomposites were found to have superior antibacterial activity, thermal resistance, and improvement in crystallinity. Thus, these bio-based materials can be used to replace the existing packaging materials in the food packaging and help to reduce the impact of conventional plastics on the environment
    corecore