2 research outputs found

    Dark blue-green: Cave-inhabiting cyanobacteria as a model for astrobiology

    Get PDF
    Subterranean environments on Earth serve as an analog for the study of microbes on other planets, which has become an active area of research. Although it might sound contradictory that photosynthetic cyanobacteria thrive in extreme low light environments, they are frequent inhabitants of caves on Earth. Throughout the phylum these cyanobacteria have developed unique adaptations that cannot only be used for biotechnological processes but also have implications for astrobiology. They can, for example, both accommodate for the low light conditions by producing specific pigments that allow photosynthesis in near-infrared (IR) radiation/far-red light, and they can synthesize bioplastic compounds and calcium carbonate sheaths which represent valuable resources during human colonization of other planets or rock bodies. This article will highlight the potential benefits of cave-inhabiting cyanobacteria and will present a suitable bioreactor technique for the utilization of these special microbes during future space missions

    Shower development of particles with momenta from 1 to 10 GeV in the CALICE Scintillator-Tungsten HCAL

    Get PDF
    28 pages, 23 figures, 3 tablesLepton colliders are considered as options to complement and to extend the physics programme at the Large Hadron Collider. The Compact Linear Collider (CLIC) is an e+e−e^+e^- collider under development aiming at centre-of-mass energies of up to 3 TeV. For experiments at CLIC, a hadron sampling calorimeter with tungsten absorber is proposed. Such a calorimeter provides sufficient depth to contain high-energy showers, while allowing a compact size for the surrounding solenoid. A fine-grained calorimeter prototype with tungsten absorber plates and scintillator tiles read out by silicon photomultipliers was built and exposed to particle beams at CERN. Results obtained with electrons, pions and protons of momenta up to 10 GeV are presented in terms of energy resolution and shower shape studies. The results are compared with several GEANT4 simulation models in order to assess the reliability of the Monte Carlo predictions relevant for a future experiment at CLIC
    corecore