21 research outputs found

    Mapping interactions with the chaperone network reveals factors that protect against tau aggregation.

    Get PDF
    A network of molecular chaperones is known to bind proteins ('clients') and balance their folding, function and turnover. However, it is often unclear which chaperones are critical for selective recognition of individual clients. It is also not clear why these key chaperones might fail in protein-aggregation diseases. Here, we utilized human microtubule-associated protein tau (MAPT or tau) as a model client to survey interactions between ~30 purified chaperones and ~20 disease-associated tau variants (~600 combinations). From this large-scale analysis, we identified human DnaJA2 as an unexpected, but potent, inhibitor of tau aggregation. DnaJA2 levels were correlated with tau pathology in human brains, supporting the idea that it is an important regulator of tau homeostasis. Of note, we found that some disease-associated tau variants were relatively immune to interactions with chaperones, suggesting a model in which avoiding physical recognition by chaperone networks may contribute to disease

    NMR tools to detect protein allostery

    No full text
    Allostery is a fundamental mechanism of cellular homeostasis by intra-protein communication between distinct functional sites. It is an internal process of proteins to steer interactions not only with each other but also with other biomolecules such as ligands, lipids, and nucleic acids. In addition, allosteric regulation is particularly important in enzymatic activities. A major challenge in structural and molecular biology today is unraveling allosteric sites in proteins, to elucidate the detailed mechanism of allostery and the development of allosteric drugs. Here we summarize the recently developed tools and approaches which enable the elucidation of regulatory hotspots and correlated motion in biomolecules, focusing primarily on solution-state nuclear magnetic resonance spectroscopy (NMR). These tools open an avenue towards a rational understanding of the mechanism of allostery and provide essential information for the design of allosteric drugs.ISSN:0959-440XISSN:1879-033

    Optimization and validation of multi-state NMR protein structures using structural correlations

    No full text
    Recent advances in the field of protein structure determination using liquid-state NMR enable the elucidation of multi-state protein conformations that can provide insight into correlated and non-correlated protein dynamics at atomic resolution. So far, NMR-derived multi-state structures were typically evaluated by means of visual inspection of structure superpositions, target function values that quantify the violation of experimented restraints and root-mean-square deviations that quantify similarity between conformers. As an alternative or complementary approach, we present here the use of a recently introduced structural correlation measure, PDBcor, that quantifies the clustering of protein states as an additional measure for multi-state protein structure analysis. It can be used for various assays including the validation of experimental distance restraints, optimization of the number of protein states, estimation of protein state populations, identification of key distance restraints, NOE network analysis and semiquantitative analysis of the protein correlation network. We present applications for the final quality analysis stages of typical multi-state protein structure calculations.ISSN:0925-2738ISSN:1573-500

    An improved, time-efficient approach to extract accurate distance restraints for NMR2 structure calculation

    No full text
    Exact nuclear Overhauser enhancement (eNOE) yields highly accurate, ensemble averaged 1H-1H distance restraints with an accuracy of up to 0.1 Å for the multi-state structure determination of proteins as well as for nuclear magnetic resonance molecular replacement (NMR2) to determine the structure of the protein-ligand interaction site in a time-efficient manner. However, in the latter application, the acquired eNOEs lack the obtainable precision of 0.1 Å because of the asymmetrical nature of the filtered nuclear Overhauser enhancement spectroscopy (NOESY) experiment used in NMR2. This error is further propagated to the eNOE equations used to fit and extract the distance restraints. In this work, a new analysis method is proposed to obtain inter-molecular distance restraints from the filtered NOESY spectrum more accurately and intuitively by dividing the NOE cross peak by the corresponding diagonal peak of the ligand. The method termed diagonal-normalised eNOEs was tested on the data acquired by on the complex of PIN1 and a small, weak-binding phenylimidazole fragment. NMR2 calculations performed using the distances derived from diagonal-normalised eNOEs yielded the right orientation of the fragment in the binding pocket and produced a structure that more closely resembles the benchmark X-ray structure (2XP6) with an average heavy-atom root-mean-square deviation (RMSD) of 1.681 Å with respect to it, when compared to the one produced with traditional NMR2 with an average heavy atom RMSD of 3.628 Å. This is attributed to the higher precision of the evaluated distance restraints.ISSN:2699-001

    Multi-Dimensional Structure and Dynamics Landscape of Proteins in Mammalian Cells Revealed by In-Cell NMR

    No full text
    Governing function, half-life and subcellular localization, the 3D structure and dynamics of proteins are in nature constantly changing in a tightly regulated manner to fulfill the physiological and adaptive requirements of the cells. To find evidence for this hypothesis, we applied in-cell NMR to three folded model proteins and propose that the splitting of cross peaks constitutes an atomic fingerprint of distinct structural states that arise from multiple target binding co-existing inside mammalian cells. These structural states change upon protein loss of function or subcellular localisation into distinct cell compartments. In addition to peak splitting, we observed NMR signal intensity attenuations indicative of transient interactions with other molecules and dynamics on the microsecond to millisecond time scale.ISSN:1433-7851ISSN:1521-3773ISSN:0570-083

    Multivalent cross-linking of actin filaments and microtubules through the microtubule-associated protein Tau

    No full text
    The microtubule associated protein Tau also interacts with filamentous actin. Here the authors combine biophysical experiments and NMR studies to characterize the structural changes that occur in Tau upon binding to filamentous actin and show that phosphorylation of serine 262 attenuates actin binding of Tau

    Structural Impact of Tau Phosphorylation at Threonine 231.

    Get PDF
    International audiencePhosphorylation of the microtubule-associated protein Tau influences the assembly and stabilization of microtubules and is deregulated in several neurodegenerative diseases. The high flexibility of Tau, however, has prevented an atomic-level description of its phosphorylation-induced structural changes. Employing an extensive set of distance and orientational restraints together with a novel ensemble calculation approach, we determined conformational ensembles of Tau fragments in the non-phosphorylated state and, when phosphorylated at T231/S235 or T231/S235/S237/S238, four important sites of phosphorylation in Alzheimer disease. Comparison of the molecular ensembles showed that phosphorylation of the regulatory T231 does not perturb the backbone conformation of the proximal microtubule-binding (225)KVAVVR(230) motif. Instead, phosphorylated T231 selectively engages in a salt bridge with R230 that can compete with the formation of intermolecular salt bridges to tubulin. Our study provides an ensemble description which will be useful for the analysis of conformational transitions in Tau and other intrinsically disordered proteins

    Ultrafast Fragment Screening Using Photo-Hyperpolarized (CIDNP) NMR

    No full text
    While nuclear magnetic resonance (NMR) is regarded asa referencein fragment-based drug design, its implementation in a high-throughputmanner is limited by its lack of sensitivity resulting in long acquisitiontimes and high micromolar sample concentrations. Several hyperpolarizationapproaches could, in principle, improve the sensitivity of NMR alsoin drug research. However, photochemically induced dynamic nuclearpolarization (photo-CIDNP) is the only method that is directly applicablein aqueous solution and agile for scalable implementation using off-the-shelfhardware. With the use of photo-CIDNP, this work demonstrates thedetection of weak binders in the millimolar affinity range using lowmicromolar concentrations down to 5 mu M of ligand and 2 mu Mof target, thereby exploiting the photo-CIDNP-induced polarizationtwice: (i) increasing the signal-to-noise by one to two orders inmagnitude and (ii) polarization-only of the free non-bound moleculeallowing identification of binding by polarization quenching, yieldinganother factor of hundred in time when compared with standard techniques.The interaction detection was performed with single-scan NMR experimentsof a duration of 2 to 5 s. Taking advantage of the readiness of photo-CIDNPsetup implementation, an automated flow-through platform was designedto screen samples at a screening rate of 1500 samples per day. Furthermore,a 212 compounds photo-CIDNP fragment library is presented, openingan avenue toward a comprehensive fragment-based screening method.ISSN:0002-7863ISSN:1520-512

    Protein structure determination in human cells by in-cell NMR and a reporter system to optimize protein delivery or transexpression

    No full text
    Most experimental methods for structural biology proceed in vitro and therefore the contribution of the intracellular environment on protein structure and dynamics is absent. Studying proteins at atomic resolution in living mammalian cells has been elusive due to the lack of methodologies. In-cell nuclear magnetic resonance spectroscopy (in-cell NMR) is an emerging technique with the power to do so. Here, we improved current methods of in-cell NMR by the development of a reporter system that allows monitoring the delivery of exogenous proteins into mammalian cells, a process that we called here “transexpression”. The reporter system was used to develop an efficient protocol for in-cell NMR which enables spectral acquisition with higher quality for both disordered and folded proteins. With this method, the 3D atomic resolution structure of the model protein GB1 in human cells was determined with a backbone root-mean-square deviation (RMSD) of 1.1 Å.ISSN:2399-364
    corecore