204 research outputs found

    MRS system study for the repository: Yucca Mountain Site Characterization Project; Volume 2

    Get PDF
    The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), has initiated a waste management system study to identify the impacts of the presence or absence of a monitored retrievable storage facility (hereinafter referred to as ``MRS``) on system costs and program schedules. To support this study, life-cycle cost estimates and construction schedules have been prepared for the surface and underground facilities and operations geologic nuclear waste repository at Yucca Mountain, Nye County, Nevada. Nine different operating scenarios (cases) have been identified by OCRWM for inclusion in this study. For each case, the following items are determined: the repository design and construction costs, operating costs, closure and decommissioning costs, required staffing, construction schedules, uncertainties associated with the costs and schedules, and shipping cask and disposal container throughputs. This document contains A-D

    New insights into volcanic processes at Stromboli from Cerberus, a remote-controlled open-path FTIR scanner system

    Get PDF
    The ordinary, low intensity, activity of Stromboli volcano is sporadically interrupted by more energetic events termed, depending on their intensity, “major explosions” and “paroxysms”. These short-lived energetic episodes represent a potential risk to visitors to the highly accessible summit of Stromboli. Observations made at Stromboli over the last decade have shown that the composition of gas emitted from the summit craters may change prior to such explosions, allowing the possibility that such changes may be used to forecast these potentially dangerous events. In 2008 we installed a novel, remote-controlled, open-path FTIR scanning system called Cerberus at the summit of Stromboli, with the objective of measuring gas compositions from individual vents within the summit crater terrace of the volcano with high temporal resolution and for extended periods. In this work we report the first results from the Cerberus system, collected in August-September 2009, November 2009 and May-June 2010. We find significant, fairly consistent, intra-crater variability for CO2/SO2 and H2O/CO2 ratios, and relatively homogeneous SO2/HCl ratios. In general, the southwest crater is richest in CO2, and the northeast crater poorest, while the central crater is richest in H2O. It thus appears that during the measurement period the southwest crater had a somewhat more direct connection to a primary, deep degassing system; whilst the central and northeast craters reflect a slightly more secondary degassing nature, with a supplementary, shallow H2O source for the central crater, probably related to puffing activity. Such water-rich emissions from the central crater can account for the lower crystal content of its eruption products, and emphasise the role of continual magma supply to the shallowest levels of Stromboli's plumbing system. Our observations of heterogeneous crater gas emissions and high H2O/CO2 ratios do not agree with models of CO2-flushing, and we show that simple depressurisation during magma ascent to the surface is a more likely model for H2O loss at Stromboli. We highlight that alternative explanations other than CO2 flushing are required to explain distributions of H2O and CO2 amounts dissolved in melt inclusions. We detected fairly systematic increases in CO2/SO2 ratio some weeks prior to major explosions, and some evidence of a decrease in this ratio in the days immediately preceding the explosions, with periods of low, stable CO2/SO2 ratios between explosions otherwise. Our measurements, therefore, confirm the medium term (~ weeks) precursory increases previously observed with MultiGas instruments, and, in addition, reveal new, short-term precursory decreases in CO2/SO2 ratios. immediately prior to the major explosions. Such patterns, if shown to be systematic, may be of great utility for hazard management at Stromboli's summit. Our results suggest that intra-crater CO2/SO2 variability may produce short-term peaks and troughs in CO2/SO2 time series measured with in-situ MultiGas instruments, due simply to variations in wind direction

    Addition of a channel for XCO observations to a portable FTIR spectrometer for greenhouse gas measurements

    Get PDF
    The portable FTIR (Fourier transform infrared) spectrometer EM27/SUN, dedicated to the precise and accurate observation of column-averaged abundances of methane and carbon dioxide, has been equipped with a second detector channel, which allows the detection of additional species, especially carbon monoxide. This allows an improved characterisation of observed carbon dioxide enhancements and makes the extended spectrometer especially suitable as a validation tool of ESA's Sentinel 5 Precursor mission, as it now covers the same spectral region as used by the infrared channel of the TROPOMI (TROPOspheric Monitoring Instrument) sensor. The extension presented here does not rely on a dichroic, but instead a fraction of the solar beam is decoupled near the aperture stop of the spectrometer using a small plane mirror. This approach allows maintaining the camera-controlled solar tracker set-up, which is referenced to the field stop in front of the primary detector. Moreover, the upgrade of existing instruments can be performed without alterating the optical set-up of the primary channel and resulting changes of the instrumental characteristics of the original instrument

    Installation and first results from a remote-controlled automatic FTIR spectrometer on

    Get PDF
    The first successful FTIR measurements on Stromboli were conducted in 2000, producing remarkable insights into the rapidly changing dynamics of degassing and explosive processes. The ability of the FTIR to simultaneously measure all the major species contained in volcanic gas emissions (H2O, CO2, SO2, HCl, HF, CO, OCS, SiF4) at high temporal resolution, when combined with the automatic SO2 flux monitoring system already installed on Stromboli could allow fluxes of all these gases to be determined accurately and automatically. In order to achieve this objective, we have designed a remotely controlled FTIR-scanner system that allows directional control over the field of view of the spectrometer. The system is planned for installation in June/July 2008, and we will present the first results from the system in this paper

    Investigation of regional variation in core flow models using spherical Slepian functions

    Get PDF
    Abstract By assuming that changes in the magnetic field in the Earth’s outer core are advection-dominated on short timescales, models of the core surface flow can be deduced from secular variation. Such models are known to be under-determined and thus require other assumptions to produce feasible flows. There are regions where poor knowledge of the core flow dynamics gives rise to further uncertainty, such as within the tangent cylinder, and assumptions about the nature of the flow may lead to ambiguous patches, such as if it is assumed to be strongly tangentially geostrophic. We use spherical Slepian functions to spatially and spectrally separate core flow models, confining the flow to either inside or outside these regions of interest. In each region we examine the properties of the flow and analyze its contribution to the overall model. We use three forms of flow model: (a) synthetic models from randomly generated coefficients with blue, red and white energy spectra, (b) a snapshot of a numerical geodynamo simulation and (c) a model inverted from satellite magnetic field measurements. We find that the Slepian decomposition generates unwanted spatial leakage which partially obscures flow in the region of interest, particularly along the boundaries. Possible reasons for this include the use of spherical Slepian functions to decompose a scalar quantity that is then differentiated to give the vector function of interest, and the spectral frequency content of the models. These results will guide subsequent investigation of flow within localized regions, including applying vector Slepian decomposition methods

    Treatment of limited stage follicular lymphoma with Rituximab immunotherapy and involved field radiotherapy in a prospective multicenter Phase II trial-MIR trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The optimal treatment of early stage follicular Lymphoma is a matter of debate. Radiation therapy has frequently been applied with a curative approach beside watchful waiting. Involved field, extended field and total nodal radiation techniques are used in various protocols, but the optimal radiation field still has to be defined. Follicular lymphoma is characterized by stable expression of the CD20 antigen on the tumour cells surface. The anti CD20 antibody Rituximab (Mabthera<sup>Âź</sup>) has shown to be effective in systemic therapy of FL in primary treatment, relapse and maintenance therapy.</p> <p>Methods/design</p> <p>The MIR (Mabthera<sup>Âź </sup>and Involved field Radiation) study is a prospective multicenter trial combining systemic treatment with the anti CD20 antibody Rituximab (Mabthera<sup>Âź</sup>) in combination with involved field radiotherapy (30 - 40 Gy). This trial aims at testing the combination's efficacy and safety with an accrual of 85 patients.</p> <p>Primary endpoint of the study is progression free survival. Secondary endpoints are response rate to Rituximab, complete remission rate at week 18, relapse rate, relapse pattern, relapse free survival, overall survival, toxicity and quality of life.</p> <p>Discussion</p> <p>The trial evaluates the efficacy of Rituximab to prevent out-filed recurrences in early stage nodal follicular lymphoma and the safety of the combination of Rituximab and involved field radiotherapy. It also might show additional risk factors for a later recurrence (e.g. remission state after Rituximab only).</p> <p>Trial Registration</p> <p>ClinicalTrials (NCT): <a href="http://www.clinicaltrials.gov/ct2/show/NCT00509184">NCT00509184</a></p
    • 

    corecore