150 research outputs found

    Hospital quality, patient risk, and Medicare expenditures for cancer surgery

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142437/1/cncr31120.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142437/2/cncr31120_am.pd

    Critical evaluation of the American Joint Commission on Cancer (AJCC) 8th edition staging system for patients with Hepatocellular Carcinoma (HCC): A Surveillance, Epidemiology, End Results (SEER) analysis

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142939/1/jso24908.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142939/2/jso24908_am.pd

    Evolutionary Dynamics of the Short-Nosed Fruit Bat, \u3ci\u3eCynopterus sphinx \u3c/i\u3e (Pteropodidae): Inferences from the Spatial Scale of Genetic and Phenotypic Differentiation

    Get PDF
    We report the results of a population-genetic study of the short-nosed fruit bat, Cynopterus sphinx (Pteropodidae). The purpose of our study was to assess the relative importance of drift, gene flow, and spatially varying selection in shaping patterns of genetic and phenotypic variation across a latitudinal climatic gradient in peninsular India. At a microgeographic scale, polygynous mating resulted in a substantial reduction of effective population size. However, at a macrogeographic scale, rates of migration were sufficiently high to prevent a pronounced degree of stochastic differentiation via drift. Spatial analysis of genetic and phenotypic differentiation revealed that clinal variation in body size of C. sphinx cannot be explained by a neutral model of isolation by distance. The geographic patterning of morphometric variation is most likely attributable to spatially varying selection and/or the direct influence of latitudinally ordered environmental effects. The combined analysis of genetic and phenotypic variation indicates that recognized subspecies of C. sphinx in peninsular India represent arbitrary subdivisions of a continuous spectrum of clinal size variation

    Survival and cost‐effectiveness of sorafenib therapy in advanced hepatocellular carcinoma: An analysis of the SEER–Medicare database

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135309/1/hep28881-sup-0001-suppinfo.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135309/2/hep28881_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135309/3/hep28881.pd

    Clinal variation in body size and sexual dimorphism in an Indian fruit bat, \u3ci\u3eCynopterus sphinx \u3c/i\u3e (Chiroptera: Pteropodidae)

    Get PDF
    Geographic variation in body size and sexual dimorphism of the short-nosed fruit bat (Cynopterus sphinx ) was investigated in peninsular India. Bats were sampled at 12 localities along a 1,200 km latitudinal transect that paralleled the eastern flanks of the Western Ghats. The geographic pattern of variation in external morphology of C. sphinx conforms to the predictions of Bergmann’s Rule, as indicated by a steep, monotonic cline of increasing body size from south to north. This study represents one of the first conclusively documented examples of Bergmann’s Rule in a tropical mammal and confirms that latitudinal clines in body size are not exclusively restricted to temperate zone homeotherms. Body size was indexed by a multivariate axis derived from principal components analysis of linear measurements that summarize body and wing dimensions. Additionally, length of forearm was used as a univariate index of structural size to examine geographic variation in a more inclusive sample of bats across the latitudinal transect. Multivariate and univariate size metrics were strongly and positively correlated with body mass, and exhibited highly concordant patterns of clinal variation. Stepwise multiple regression on climatological variables revealed that increasing size of male and female C. sphinx was associated with decreasing minimum temperature, increasing relative humidity, and increasing seasonality. Although patterns of geographic size variation were highly concordant between the sexes, C. sphinx also exhibited a latitudinal cline in the magnitude and direction of sexual size dimorphism. The size differential reversed direction across the latitudinal gradient, as males averaged larger in the north, and females averaged larger in the south. The degree of female-biased size dimorphism across the transect was negatively correlated with body size of both sexes. Canonical discriminant analysis revealed that male- and female-biased size dimorphism were based on contrasting sets of external characters. Available data on geographic variation in the degree of polygyny in C. sphinx suggests that sexual selection on male size may play a role in determining the geographic pattern of sexual size dimorphism

    Mutation location on the RAS oncogene affects pathologic features and survival after resection of colorectal liver metastases

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136316/1/cncr30351_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136316/2/cncr30351.pd

    Low-temperature titania-graphene quantum dots paste for flexible dye-sensitised solar cell applications

    Get PDF
    Graphene possesses excellent mechanical strength and chemical inertness with high intrinsic carrier mobility and superior flexibility making them exceptional candidates for optoelectronic applications. Graphene quantum dots (GQDs) derived from graphene domains have been widely explored to study their photoluminescence properties which can be tuned by size. GQDs are biocompatible, low cytotoxic, strongly luminescent and disperse well in polar and non-polar solvents showing bright promise for the integration into devices for bioimaging, light emitting and photovoltaic applications. In the present study, graphene quantum dots were synthesized by an electrochemical cyclic voltammetry technique using reduced graphene oxide (rGO). GQDs have been incorporated into binder free TiO2 paste and studied as a photoelectrode material fabricated on ITO/PEN substrates for flexible dye sensitized solar cells (DSSCs). DSSC based on GQDs-TiO2 exhibited open circuit output potential difference (Voc) of 0.73 V, and short circuit current density (Jsc) of 11.54 mA cm-2 with an increment in power conversion efficiency by 5.48 %, when compared with those with DSSC build with just a TiO2 photoanode (open-circuit output potential difference (Voc) of 0.68 V and short circuit density (Jsc) of 10.67 mA cm-2). The results have been understood in terms of increased charge extraction and reduced recombination losses upon GQDs incorporation

    Dynamic Phenotypic Switching and Group Behavior Help Non-Small Cell Lung Cancer Cells Evade Chemotherapy

    Get PDF
    Drug resistance, a major challenge in cancer therapy, is typically attributed to mutations and genetic heterogeneity. Emerging evidence suggests that dynamic cellular interactions and group behavior also contribute to drug resistance. However, the underlying mechanisms remain poorly understood. Here, we present a new mathematical approach with game theoretical underpinnings that we developed to model real-time growth data of non-small cell lung cancer (NSCLC) cells and discern patterns in response to treatment with cisplatin. We show that the cisplatin-sensitive and cisplatin-tolerant NSCLC cells, when co-cultured in the absence or presence of the drug, display dynamic group behavior strategies. Tolerant cells exhibit a \u27persister-like\u27 behavior and are attenuated by sensitive cells; they also appear to \u27educate\u27 sensitive cells to evade chemotherapy. Further, tolerant cells can switch phenotypes to become sensitive, especially at low cisplatin concentrations. Finally, switching treatment from continuous to an intermittent regimen can attenuate the emergence of tolerant cells, suggesting that intermittent chemotherapy may improve outcomes in lung cancer
    • 

    corecore