
University of Nebraska Medical Center University of Nebraska Medical Center 

DigitalCommons@UNMC DigitalCommons@UNMC 

Journal Articles: Biochemistry & Molecular 
Biology Biochemistry & Molecular Biology 

2021 

Dynamic Phenotypic Switching and Group Behavior Help Non-Dynamic Phenotypic Switching and Group Behavior Help Non-

Small Cell Lung Cancer Cells Evade Chemotherapy Small Cell Lung Cancer Cells Evade Chemotherapy 

Arin Nam 

Atish Mohanty 

Supriyo Bhattacharya 

Sourabh Kotnala 

Srisairam Achuthan 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.unmc.edu/com_bio_articles 

 Part of the Medical Biochemistry Commons, and the Medical Molecular Biology Commons 

http://www.unmc.edu/
http://www.unmc.edu/
https://digitalcommons.unmc.edu/
https://digitalcommons.unmc.edu/com_bio_articles
https://digitalcommons.unmc.edu/com_bio_articles
https://digitalcommons.unmc.edu/com_bio
https://digitalcommons.unmc.edu/com_bio_articles?utm_source=digitalcommons.unmc.edu%2Fcom_bio_articles%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/666?utm_source=digitalcommons.unmc.edu%2Fcom_bio_articles%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/673?utm_source=digitalcommons.unmc.edu%2Fcom_bio_articles%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Arin Nam, Atish Mohanty, Supriyo Bhattacharya, Sourabh Kotnala, Srisairam Achuthan, Kishore Hari, 
Saumya Srivastava, Linlin Guo, Anusha Nathan, Rishov Chatterjee, Maneesh Jain, Mohd W. Nasser, 
Surinder K. Batra, Govindan Rangarajan, Erminia Massarelli, Herbert Levine, Mohit Kumar Jolly, Prakash 
Kulkarni, and Ravi Salgia 



����������
�������

Citation: Nam, A.; Mohanty, A.;

Bhattacharya, S.; Kotnala, S.;

Achuthan, S.; Hari, K.; Srivastava, S.;

Guo, L.; Nathan, A.; Chatterjee, R.;

et al. Dynamic Phenotypic Switching

and Group Behavior Help Non-Small

Cell Lung Cancer Cells Evade

Chemotherapy. Biomolecules 2021, 12,

8. https://doi.org/10.3390/

biom12010008

Academic Editor: Vladimir

N. Uversky

Received: 22 November 2021

Accepted: 17 December 2021

Published: 21 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Article

Dynamic Phenotypic Switching and Group Behavior Help
Non-Small Cell Lung Cancer Cells Evade Chemotherapy

Arin Nam 1,† , Atish Mohanty 1,† , Supriyo Bhattacharya 2,† , Sourabh Kotnala 1, Srisairam Achuthan 3,

Kishore Hari 4 , Saumya Srivastava 1, Linlin Guo 1, Anusha Nathan 1,‡, Rishov Chatterjee 3, Maneesh Jain 5,

Mohd W. Nasser 5 , Surinder Kumar Batra 5 , Govindan Rangarajan 6,7, Erminia Massarelli 1 ,

Herbert Levine 8,9, Mohit Kumar Jolly 4 , Prakash Kulkarni 1 and Ravi Salgia 1,10,*

1 Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center,

Duarte, CA 91010, USA; anam@coh.org (A.N.); amohanty@coh.org (A.M.); sauravkotnala@gmail.com (S.K.);

ssrivastava@coh.org (S.S.); lguo@coh.org (L.G.); anathan@coh.org (A.N.); emassarelli@coh.org (E.M.);

pkulkarni@coh.org (P.K.)
2 Integrative Genomics Core, Beckman Research Institute, City of Hope National Medical Center,

Duarte, CA 91010, USA; sbhattach@coh.org
3 Center for Informatics, Division of Research Informatics, City of Hope National Medical Center,

Duarte, CA 91010, USA; sachutan@coh.org (S.A.); rchatterjee@coh.org (R.C.)
4 Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;

kishorehari@iisc.ac.in (K.H.); mkjolly@iisc.ac.in (M.K.J.)
5 Department of Biochemistry and Molecular Biology, College of Medicine,

University of Nebraska Medical Center, Omaha, NE 68198, USA; mjain@unmc.edu (M.J.);

wasim.nasser@unmc.edu (M.W.N.); sbatra@unmc.edu (S.K.B.)
6 Department of Mathematics, Indian Institute of Science, Bangalore 560012, India; rangaraj@iisc.ac.in
7 Center for Neuroscience, Indian Institute of Science, Bangalore 560012, India
8 Department of Physics, Northeastern University, Boston, MA 02115, USA; h.levine@northeastern.edu
9 Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
10 Department of Medical Oncology and Therapeutics Research, Arthur & Rosalie Kaplan Endowed Chair in

Medical Oncology, 1500 E. Duarte Road, Duarte, CA 91010, USA

* Correspondence: rsalgia@coh.org; Tel.: +1-626-471-9200; Fax: +1-626-471-7322

† These authors contributed equally to this work.

‡ Present address: Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA.

Abstract: Drug resistance, a major challenge in cancer therapy, is typically attributed to mutations

and genetic heterogeneity. Emerging evidence suggests that dynamic cellular interactions and group

behavior also contribute to drug resistance. However, the underlying mechanisms remain poorly

understood. Here, we present a new mathematical approach with game theoretical underpinnings

that we developed to model real-time growth data of non-small cell lung cancer (NSCLC) cells and

discern patterns in response to treatment with cisplatin. We show that the cisplatin-sensitive and

cisplatin-tolerant NSCLC cells, when co-cultured in the absence or presence of the drug, display

dynamic group behavior strategies. Tolerant cells exhibit a ‘persister-like’ behavior and are attenuated

by sensitive cells; they also appear to ‘educate’ sensitive cells to evade chemotherapy. Further, tolerant

cells can switch phenotypes to become sensitive, especially at low cisplatin concentrations. Finally,

switching treatment from continuous to an intermittent regimen can attenuate the emergence of

tolerant cells, suggesting that intermittent chemotherapy may improve outcomes in lung cancer.

Keywords: chemoresistance; cisplatin; lung cancer; evolutionary game theory; group behavior;

persister trait; phenotypic switching

1. Introduction

Drug resistance in cancer is generally believed to arise stochastically through ran-
dom genetic mutations and the subsequent expansion of mutant clones via Darwinian
selection [1,2]. However, emerging evidence suggests that non-genetic and epigenetic mech-
anisms may also play a critical role [3–5], leading to enhanced adaptability and cooperation
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under stressful conditions [3–5]. Nonetheless, such mechanisms have not been fully ex-
plored and are rarely integrated into clinical trials or in precision oncology initiatives [6–8].
Furthermore, combining conventional therapies with treatment strategies based on can-
cer ecology could potentially delay or even prevent drug tolerance and eventually, drug
resistance [2,8–10].

Several studies have reported the existence of drug-resistant and drug-tolerant (i.e., weakly
or moderately resistant) clones in pre-treatment tumors [11], although the population of
these clones is usually low in the presence of drug-sensitive cells [12]. This raises questions
as to how drug-sensitive and resistant/tolerant clones in a tumor influence each other’s
fitness (growth), and whether cooperation and competition (group behavior) between the
sensitive and tolerant cells influence the response to drug therapy. Thus, discerning group
behavior by monitoring interactions between drug-tolerant and -sensitive cells in real time
in the absence or presence of the drug is a powerful tool to elucidate the role of group
behavior [13,14].

Here, we have used human non-small cell lung cancer (NSCLC) cells that are sensitive
or tolerant to cisplatin, one of the most commonly used chemotherapeutics, to understand
the role of group behavior in the emergence of drug-tolerant clones, and eventually resis-
tant clones. Ideally, these experiments would have been performed using cell lines that
have a common evolutionary origin, e.g., from the same patient. However, sensitive and
tolerant cells from the same patient were not readily available and our efforts in generating
isogenic drug-tolerant cell lines by exposing drug-sensitive NSCLC cells to cisplatin was
unsuccessful. Alternatively, we used established sensitive and tolerant cell lines to perform
these experiments (see discussion for an explanation of the caveats). The cells expressing
red fluorescent protein (RFP) or green fluorescent protein (GFP) were mixed (heterotypic
culture) and cultured in different ratios. The proliferation of the two cell types was fol-
lowed in real time and compared with the same cells grown alone (monotypic culture). The
cell counts were used to determine the dynamic behavior of the population, and results
were correlated with the cell-autonomous and non-cell-autonomous fitness (growth rate)
effects [5]. Since cell-autonomous fitness effects are defined as those inherent to the cell, the
growth rates from monotypic cultures provided the necessary information for determining
these effects [4]. In contrast, non-cell-autonomous effects are those that allow fitness to
depend on a cell’s microenvironment including the frequency of other cellular phenotypes
as well as diffusible factors in the media [15].

Since standard models based on evolutionary game theory proved inadequate to
analyze the data, we developed a new approach, Phenotypic Switch Model with Stress
Response (PSMSR), that incorporates concepts from chemical reaction kinetics and the
cooperative behavior of drug-tolerant phenotypes in the community. A distinguishing
feature of the PSMSR model is that it considers the ability of cancer cells to switch phe-
notypes. Employing PSMSR, we showed that, quantitatively, the two cell populations,
when co-cultured in the absence of cisplatin, display dynamic group behavior that can be
interpreted using evolutionary game theory concepts as payoffs (benefit or loss of individ-
ual players associated with a set of game strategies such as competition or cooperation).
Due to phenotypic switching by the cells, the game strategies were dynamically altered
based on cell frequencies and stress level while maximizing group survival. However,
in the presence of cisplatin, the group behavior (cooperation) was attenuated in favor of
self-survival. Furthermore, we demonstrate that switching treatments from a continuous
to an intermittent regimen can attenuate the emergence of tolerant cells, underscoring
a potentially new treatment option that could benefit patients with NSCLC. These results
can be further verified using sensitive and tolerant cells from the same patient or creating
them from a common parental cell line, to make them more relevant in the broader cancer
context. Nonetheless, initial success of the intermittent therapy in zebrafish, as shown in
this work, suggests that our observations could be relevant in vivo.
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2. Results

2.1. Cisplatin-Sensitive and Tolerant Cells Demonstrate Different Behaviors in Monotypic and
Heterotypic Cultures

A schematic overview summarizing the experiments and the source of data collection
used in developing the theoretical models are presented in Figure 1A–C. Fluorescently
labeled cisplatin-sensitive H23 and cisplatin-tolerant H2009 NSCLC cells [16] were co-
cultured and monitored in real time (Supplementary Figure S1A,B). Both the cell lines have
frequently observed mutations of P53 and KRAS, in addition to STK11 and ATM specific to
H23, or TERT and B2M mutation specific to H2009 cells (Cellosaurus cell line database). To
discern differences in their behavior, the two cell line cultures were grown as monotypic
(grown by themselves) or as heterotypic cultures (co-culture of sensitive and tolerant cells)
in a 1:1 ratio. To determine the short-term effects of heterotypic culture, we incubated the
cells for 12 h before the start of the experiment (Supplementary Figure S2A, schematic).
But to determine the long-term effects, they were co-cultured for three weeks (without
cisplatin) before the start of the experiment (Figure 2A, schematic).

Figure 1. Cont.



Biomolecules 2021, 12, 8 4 of 20

Figure 1. Schematic summarizing the experiment and the source of data used in developing

the theoretical cell growth models. (A) The schematic representation of the different incubation

duration, ratios, and treatments used for generating the data to develop the mathematical model.

(B) schematic describing the principles on which the mathematical model PSMSR was developed;

(C) panel representing the functional form of PSMSR (please see the main text for further details).

Figure 2. Cont.
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Figure 2. Behavior of cisplatin-sensitive (S) and tolerant (T) NSCLC cells in 2D co-culture.

(A) Schematic representation of the experimental design of co-culturing S and T cells in a ratio

of 1:1 and collection of data points. Proliferation of sensitive (red) and tolerant (green) cells under

different culture conditions in the absence or presence of cisplatin. Two-way ANOVA test (multiple

comparison) showing statistical significance **** p < 0.0001. (B) Sensitive and tolerant cells were plated

in increasing T:S ratios and cultured for three weeks. Proliferation rate of sensitive cells (red) and

tolerant cells (green) in heterotypic culture over the course of 144 h. (C) Fold change in cell count of

sensitive cells (red) and tolerant cells (green) in heterotypic culture was measured after 144 h for ratios

1:1, 2:1, 4:1 and 8:1. Two-way ANOVA was used for calculating statistical significance **** p < 0.0001,

ns—not significant. (D) Fold change in cell count of sensitive cells (purple) and tolerant cells (blue)

in heterotypic culture was measured after 144 h in presence of cisplatin for ratios 1:1, 2:1, 4:1 and

8:1. Two-way ANOVA was used for calculating statistical significance *** p < 0.0001, ns—not signifi-

cant. (E) Change in tolerant/sensitive cells ratio with (orange) and without (black) 5 µM cisplatin

over the course of 144 h was measured. Statistical significance * p ≤ 0.05, **** p < 0.0001, ns—not

significant. (F) Schematic representation of the conditioned medium experiment. (G) The left line

graph representing the effect of tolerant cell conditioned medium on sensitive cells, and the right line

graph representing the inhibitory effect of tolerant cell conditioned medium on sensitive cells growth.

(H) Schematic representation of conditioned medium experiment to correlate the stoichiometry be-

tween cell number and inhibitory effect secreted by sensitive cells. (I) The bar graph representing the

inhibitory effect of condition medium on different cell number of tolerant or sensitive cells. Statistical

significance information can be found in Supplementary Tables S2 and S3.

At a 1:1 ratio, there was no significant difference in the fold-change (ratio of the cell
population at any time point relative to t = 0 h) of the sensitive cell counts between the
monotypic (grown by themselves) and heterotypic cultures (mixed with tolerant cells for
12 h or three weeks prior to counting), and they were equally sensitive to 5 µM cisplatin
in all three conditions (Figure 2A, left panel bar graph in red). These monotypic and
heterotypic culture experiments were also performed using tolerant cells, and no significant
change in cell count or drug tolerance was observed for the cells mixed for only 12 h prior to
the experiment (Figure 2A, right panel bar graph in green, bars labeled “Alone” and “Mix
before”). However, when tolerant cells were co-cultured with sensitive cells for three weeks
prior to the experiment, they showed a marked reduction in cell proliferation (Figure 2A
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green bar graph, dark green bar labeled “3-wk co-culture”). Moreover, when cisplatin was
added to this 3-week co-cultured cells, the tolerant cells showed a smaller reduction in
cell growth compared with those cultured separately or mixed 12 h before the experiment
began (Figure 2A, right panel bar graph in green), and their proliferation was significantly
attenuated by long coexistence with the sensitive cells, suggesting that tolerant cells appear
to exhibit a ‘persister-like’ trait (please see the “Discussion” section) [17,18].

We further explored the long term 3-week co-culture experiments by seeding the cells
at increasing tolerant-to-sensitive ratios (1:1, 2:1, 4:1, 8:1), and recorded their growth every
2 h using the IncuCyte live cell imaging system (Supplementary Figure S1C schematic). At
a seeding ratio of 1:1, the sensitive cells showed an 8-fold increase in cell count within 96 h,
and reached a plateau post 96 h, whereas the tolerant cells exhibited a 4-fold increase in
cell count within 72 h, followed by a drop and plateau for the rest of the time (Figure 2B).
At the end of the experiment (144 h), the sensitive cell growth was 2.5-fold more than
the tolerant cells for 1:1 ratio, compared with 1.5, 1.4 and 1.2-fold for the 2:1, 4:1 and
8:1 ratios, respectively (Figure 2C). These data reveal that the tolerant cell proliferation was
suppressed in presence of sensitive cells but could be rescued by increasing the fraction of
tolerant cells in the co-cultures.

Next, we determined the proliferation profile for all the seeding ratios in the presence
of cisplatin. Cisplatin had a cytostatic effect on the sensitive cells, and the fold change in
the cell count remained approximately 1 for all the ratios (Figure 2D, purple bar graph).
However, the tolerant cell proliferation was approximately 1.4, 2.09, 1.95, and 2.04-fold
at the tolerant:sensitive seeding ratios of 1:1, 2:1, 4:1 and 8:1, respectively. Therefore, the
administration of cisplatin rescued the tolerant cell growth from the suppressive effect of
the sensitive cells by selectively curtailing the sensitive cell growth. In fact, the tolerant cells
proliferated better in the presence of cisplatin and increasing the seeding ratio of tolerant
cells in the population also favored their growth (Figure 2D).

The sensitive cells have a suppressive effect on the tolerant cells in a frequency-
dependent manner was also evident by analyzing the change in tolerant to sensitive
fraction at the end of 144 h in the untreated conditions (0.2, 1.4, 6.3, 17.4 at T:S seeding
ratios of 1:1, 2:1, 4:1 and 8:1, respectively, Figure 2E, black bars). In addition, the tolerant
to sensitive fractions in the presence of cisplatin were 0.8, 4.9, 16.9 and 38.8 for the same
seeding ratios (Figure 2E, orange bars). Thus, there was an increase in the tolerant to
sensitive cell fraction in the population treated with cisplatin, suggesting a reduction in
the sensitive cell population as well as better fitness of the tolerant cells in the presence
of cisplatin.

2.2. Sensitive Cells Suppress Growth of Tolerant Cells in the Absence of Drug

To discern the effect of short-term association between the sensitive and the tolerant
cells on their group behavior, we repeated the above experiments by incubating the co-
culture for only 12 h instead of three weeks prior to starting the experiments (Supplementary
Figure S2A, schematic). Here, at 1:1 tolerant:sensitive seeding ratio, the fold change in the
tolerant cell population at the end of 144 h was 8-fold (Supplementary Figure S2B), whereas
after three weeks of co-culture, we observed a 4-fold change in the growth (Figure 2C
and Supplementary Table S1). Also, compared with the three weeks co-culture, where the
tolerant cell fold changes were significantly lower (p < 0.0001) than that of the sensitive cells
for all seeding ratios except 8:1, the 12-h co-culture showed less difference in fold changes
between the two cell types (p < 0.001) at seeding ratios 2:1 and 4:1, and insignificant at 8:1
(Supplementary Figure S2E). The tolerant-to-sensitive fraction in the population at 144 h
was also higher than in the three weeks co-culture experiments for seeding ratios 1:1 and 2:1
(1.2 and 3.3 vs. 0.2 and 1.4 in the three weeks co-culture, Supplementary Figure S2G). Taken
together, these data show that the short-term association between the two cell types did not
suppress the tolerant cell population as efficiently as the long-term association. However,
in the presence of cisplatin, the tolerant cell proliferation was significantly higher compared
with the sensitive cells (p < 0.0001, Supplementary Figure S2C,F). Next, we compared the
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change in the tolerant cells to the sensitive cell fraction and observed a similar trend as
seen in the three weeks co-culture for all seeding ratios. The increase in growth of the
tolerant cells was also supported by the increase in their fraction of the population in the
absence of cisplatin, and further, that the presence of cisplatin supported their growth.
(Supplementary Figure S2C,D orange line graph and Supplementary Figure S2G orange
bar graph).

The growth trends indicated a competition between the two cell types which was
enhanced by long-term association. In contrast, the behavior of the tolerant cells suggested
mutual cooperation to improve survival, which was favored by the higher seeding ratios. To
explore the frequency-dependent competition of the sensitive cells towards the tolerant cells,
we expanded the seeding ratios to increased proportions of sensitive cells in the population
(i.e., sensitive to tolerant ratios of 1:1 to 8:1) (Supplementary Figure S3A, schematic).

Consistent with the previous experiments, in the absence of cisplatin, the sensitive
cells suppressed the growth of tolerant cells (Supplementary Figure S3B,E). Again, in the
presence of cisplatin, the tolerant cell growth was dominated in the population by approxi-
mately 1.9, 2.2, 2.7 or 3.8-fold over sensitive cells for the sensitive to tolerant ratios of 1:1, 2:1,
4:1 or 8:1, respectively (Supplementary Figure S3F). The increase in growth of the tolerant
cells was also supported by the presence of cisplatin (Supplementary Figure S3C,D orange
line graph and Supplementary Figure S3G orange bar graph). Together, these experiments
indicated that in a heterogeneous population, dynamic competition and cooperation exist
between the sensitive and the tolerant cells, and the sensitive cells dominate over the
tolerant cells. In contrast, the presence of cisplatin favors the survival and proliferation of
the tolerant cells by inducing cell death among the sensitive cells.

2.3. Sensitive Cells Secrete a Factor(s) that Retards the Growth of Tolerant Cells

To discern whether a physical interaction between the two cell types is necessary
or the sensitive cells secrete an ‘inhibitory factor’ to attenuate tolerant cell growth, the
cells were grown in conditioned medium from sensitive or tolerant cell monocultures
(Figure 2F, schematic). As seen in the right graph in Figure 2G, conditioned medium from
the sensitive cells impeded proliferation of tolerant cells by ~4.5-fold. In contrast, the
conditioned medium from the tolerant cells had no significant effect on the growth of the
sensitive cells (Figure 2G, left graph), alluding to the presence of one or more inhibitory
factors in the conditioned medium from the sensitive cells. Furthermore, at a lower seeding
density (Figure 2H, schematic), the conditioned medium had a greater inhibitory effect
(approximately 6-fold) on the tolerant cells and reduced in a dose-dependent fashion with
an increase in tolerant cell seeding density (Figure 2I). Thus, the suppressive effect of
the sensitive cell-conditioned medium was reduced with a greater number of tolerant
cells (Figure 2I).

2.4. Intermittent Therapy Can Sustain a Population of Cisplatin-Sensitive Tumor Cells while
Attenuating the Proliferation of Resistant Cells

Since the proliferation of the tolerant cells was remarkably impeded when co-cultured
with sensitive cells for prolonged periods prior to cisplatin treatment, we asked if contin-
uous or intermittent cisplatin treatments would differentially affect a mixed population
of the two cell types. Toward this end, we mixed the two cell types at different sensitive-
to-tolerant ratios and treated them as described in Supplementary Figure S4, schematic.
Within 10 days, we observed that the ratio of tolerant to sensitive cells increased by 50-
to 100-fold for the initial seeding ratios of 1:1, 2:1 and 4:1 (sensitive:tolerant), respectively,
under continuous treatment. On the other hand, the tolerant-to-sensitive (T:S) ratio for the
intermittent therapy increased only 3- to 8-fold (Figure 3A–C), suggesting that sensitive
cells were able to recover from the drug toxicity and proliferate.
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Figure 3. Tolerant cells reversibly switch their phenotype to become sensitive with intermittent

therapy. (A–C) Bar graph showing the ratio of tolerant versus sensitive cell population over a period

of 10 days. The cell ratio for the “Continuous” group wherein the cells were continuously treated

with cisplatin is shown in blue and the ratio for the “Intermittent” group wherein the cells were

treated with cisplatin for two days and released in fresh medium (intermittent) is shown in black.

(D–F) Media from “Intermittent—2 cycles” group was removed after four days of cisplatin treatment

and replaced with fresh medium and the cells were allowed to grow until confluent. These cells

were monitored in real-time to determine the ratio of tolerant versus sensitive over the course of

25 days. Similarly, the cells that only received cisplatin once (“Intermittent—1 cycle”) throughout the

experiment were also followed for 25 days. (G) Sensitive (S, red fluorescence) and tolerant (T, green
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fluorescence) cells were mixed at S:T ratio of 4:1 and microinjected into the perivitelline space of

zebrafish larvae 48-h post fertilization (hpf). Twenty-four hours after microinjection, larvae were

randomly divided into three groups: Group 1 received no drug treatment (Untreated), Group 2

received cisplatin 20 µM for three days and released with no drug for two days (Intermittent),

and Group 3 received cisplatin 20 µM continuously for five days (Continuous). Ratio of tolerant

versus sensitive cells was determined by measuring fluorescence intensity. One way ANOVA was

used for calculating statistical significance ** p < 0.05, *** p < 0.001, ns—not significant (H–J) Effect

of suberoylanilide hydroxamic acid (SAHA) on cisplatin-sensitive (H23), -tolerant (H2009), and

-resistant (H1993) cells, demonstrating that SAHA can reverse the phenotype of H2009 from tolerant

state to sensitive state. Statistical significance information can be found in Supplementary Table S4.

We prolonged the intermittent therapy by splitting the cells growing in cisplatin-free
media post cisplatin treatment into two sets: ‘Intermittent 1 cycle’ and ‘Intermittent 2
cycle’ as described in Supplementary Figure S4. In ‘Intermittent 1’, we observed the
(initially cisplatin exposed) cells cisplatin-free for 25 days, whereas in ‘Intermittent 2’, we
treated the cells with one extra dose of cisplatin for four days, before observing them in
cisplatin-free media for the rest of the duration. We then asked if the sensitive cells, once
exposed to cisplatin, would outgrow the tolerant cells to recapitulate the data shown in
Figures 2B and S3B.

We continued the culture for 24 days, to let the cells grow and once confluent, pas-
saged one to five every 6–8 days. We observed that the tolerant vs. sensitive ratio fell to
approximately 2, 1.6 and 0.4 for initial seeding densities of 1:1, 2:1 or 4:1, respectively, for
the cells treated only once with cisplatin on Day 3 (Intermittent—1 cycle) (Figure 3D–F,
black line). In contrast, the ratio of cells that received the second dose of cisplatin treatment
(‘Intermittent—2 cycles’) and were allowed to recover in fresh media, did not show any
decrease in the tolerant population and maintained a S:T ratio of 100/800 (Figure 3D–F,
red line). To validate the in vitro observations in vivo, we injected zebrafish larvae with
fluorescently tagged cells and treated them with cisplatin (see Supplemental Information
for details). While continuous cisplatin treatment for five days resulted in a tumor with
predominantly tolerant cells, intermittent treatment led to no significant change in the
T:S ratio (Figure 3G), indicating that intermittent treatment can ensure a stable disease
whereas the continuous therapy favors emergence of drug refractory disease. However,
the behavior of sensitive and tolerant cells that share a common evolutionary origin and
have co-evolved in the same host for a long period of time needs to be tested, something
which we plan to address in future. In light of the fact that phenotypic switching is emerg-
ing as an important defense mechanism in cancer cells, our observations may have real
implications in designing sustainable therapy.

2.5. Epigenetic Modulation Can Distinguish Drug Sensitivity, Tolerance and Resistance in
Lung Cancer

To test the possibility that drug sensitivity can be regulated at the epigenetic level
in a reversible way, as opposed to genetic mutations alone, we used two different epige-
netic modulators namely, 5-azacytidine (5-AZA), a DNA methyltransferase inhibitor, and
suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, and determined
their effects on cisplatin resistance. While SAHA treatment did not enhance the effect of
cisplatin on sensitive H23 cells (Figure 3H) or H1993 cells that are resistant to cisplatin
(IC50 > 300 µM) (Figure 3J), it had a significant additive effect on the H2009 cells, sug-
gesting that these cells can become sensitive through epigenetic intervention (Figure 3I).
However, 5-AZA had no discernable effect (not shown), suggesting that epigenetic regula-
tion of chromatin rather than specific cytosine residues in the DNA modulates cisplatin
tolerance in the H2009 cells. Based on these criteria, H2009 qualify as cisplatin-tolerant
(reversible) rather than resistant (irreversible) while H1993 may represent a truly resistant
phenotype. Taken together, these observations suggest that tolerance to cisplatin can be
reversed unless the tolerant cells acquire mutations making them irreversibly resistant.
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2.6. Modeling Cancer Group Behavior Using Experimentally Derived Growth Curves

Typically, group behavior among cancer cell populations is studied using variants
of the Lotka–Volterra (LV) model, where the inter-species competition and cooperation
depend on the species frequencies [19–21]. We tested one such model (Li et al.) which has
been successful in explaining the evolutionary dynamics in bacterial co-cultures [22]. The
major difference of the Li et al. model to LV is the implementation of growth rates that
depend on the species frequencies, leading to more complex dynamics than can be captured
by the classical LV model. However, the Li et al. model did not quantitatively explain
our experimental data (details in the Supplementary text, Section S1 and Supplementary
Figure S5) warranting alternative and possibly more complex models. We think the models
such as LV or Li et al. are not suitable for our system partly due to the fact that they treat
each cell identity as immutable, therefore ignoring the plastic phenotypes of cancer cells due
to phenotypic switching. To address these deficiencies, we have developed a new model
(Phenotype Switch Model with Stress Response or PSMSR), incorporating the knowledge
about our specific cellular system and the observed growth trends.

The key evidence that motivated the new model PSMSR are as follows:

1. Sensitive cells suppress the proliferation of the tolerant cells by secreting diffusible
factors (can be overcome by increasing the frequency of tolerant cells)

2. The suppressive effect is only prominent after co-culture of the two cell types for three
weeks, but not if the cells are mixed and monitored immediately

3. Competition by the sensitive cells is eliminated in the presence of cisplatin
4. Epigenetic modifier SAHA can switch the tolerant cells to be drug-sensitive through

non-genetic means, implying that these cells can switch their phenotypes in response
to the environment.

Based on the above observations, the following are the key premises involved in
PSMSR (Figure 4A):

1. Sensitive cells generate one or more products that affect the proliferation of the tolerant
cells (and possibly their own as well). We call this hypothetical product(s) ‘stress’ (we
explain its significance in Supplementary Text Section S2).

2. Since the cohabitation of the cells appear to change their phenotypes (e.g., stronger sup-
pression of tolerant cells by the sensitive cells after three weeks of co-culture), and we
do not have enough information to model this phenotypic change as function of the co-
habitation conditions, every system (i.e., monotypic, heterotypic-12 h and heterotypic-
3 weeks) must be treated as distinct with their own phenotypic parameters.

3. Through mutual cooperation the tolerant cells can mitigate or neutralize the ‘stress’
generated by the sensitive cells in a frequency-dependent manner.

4. Due to stochastic phenotypic switching (sensitive 
 tolerant) by the two cellular
species, a state of equilibrium exists between the two phenotypes at any point of time,
where the equilibrium constant depends on the stress. As stress increases in the system,
the equilibrium shifts to the right to increase the fraction of the tolerant phenotype.

5. To keep the model conceptually tractable, we make the simplifying assumption that in
relation to the observed growth dynamics, there is no significant difference between
the true tolerant phenotype and the one produced through phenotypic switching of
the sensitive cells. Likewise, the true sensitive phenotype and the one from phenotypic
switching are identical as well (see caveats mentioned in the discussion).
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Figure 4. Cooperativity and stress response as described by the PSMSR model. (A) Schematic

describing the PSMSR model; initially, the sensitive and the tolerant cells proliferate indepen-

dently; as stress builds up, sensitive cells switch their phenotype to tolerant cells and vice versa;

tolerant cells remove stress and maintain a small population, while enabling the sensitive cells to

proliferate. (B,C) Fitting of the phenotype-switch model to the cellular growth curves of sensitive

and tolerant cell populations, where the cells were mixed at different proportions and counting



Biomolecules 2021, 12, 8 12 of 20

was started immediately; the colors represent the growth curves from different initial seeding

proportions, as indicated in the legend (sensitive to tolerant cell seeding ratios); (D–F) predicted

evolution of phenotypic switching and stress in monotypic cultures; (D,E) populations of sensitive

and (switched) tolerant phenotypes with time, when seeded with sensitive cells only; (F) stress as

function of time; (G–I) predicted evolution of switched phenotypes and stress in heterotypic culture

experiments, where cell growth was monitored immediately after mixing; (G) fraction of sensitive

cells that have switched to the tolerant phenotype, as function of time; (H) fraction of tolerant cells that

have switched to the sensitive phenotype, as function of time; (I) stress with time; colors are according

to the initial seeding ratio of sensitive to tolerant cells as shown in the legend; the total cell population

in each case was close to 5000; (J,K) evolving game strategy landscape of cellular population due

to stress and phenotypic switching; the heatmaps of time varying payoff values representative of

inter-species competition/cooperation are shown as function of the sensitive-to-tolerant seeding ratio;

payoff values are derived by fitting the PSMSR model to the competitive Lotka–Volterra equations;

orange areas in the maps represent competitive behavior, green areas represent cooperative behavior;

(J) α12 representing the effect of tolerant cells towards the sensitive cells; (K) α21 representing the

effect of sensitive cells towards the tolerant cells.

The model presented here reflects the following mechanisms: (i) cellular growth leads
to stress accumulation, (ii) accumulated stress reduces growth, (iii) tolerant cells are efficient
in neutralizing stress, (iv) stress accumulation triggers the switching of sensitive cells to the
tolerant phenotype. Hence, the growth rates of the sensitive (S) and the tolerant cells (T)
can be expressed as,

dS

dt
= −KaS + KbT + KGSS (1)

dT

dt
= −KbT + KaS + KGTT (2)

Here, KGS and KGT are the stress-dependent effective growth rates (incorporating both
proliferation and cell death) of the sensitive and tolerant cells respectively. Ka and Kb are
the rate of switching from sensitive to the tolerant phenotype and vice versa and K is the
equilibrium constant of phenotypic switching (Equation (3)) [23]. We assume KGS, KGT, K
to be linearly dependent on stress and Kb to be fixed, although the exact functional forms
that map these quantities to stress is less important, as long as a monotonic relationship
is maintained. Notably, we also fit the PSMSR model assuming sigmoidal as opposed to
linear relationships of the above rate parameters with stress (Supplementary Figure S6),
without significant worsening of fitting error (Supplementary Figure S7). For details, see
Supplementary Section S3.

K =
Ka

Kb
(3)

where K is the equilibrium constant for phenotypic switching.
Next, we assume that stress is predominantly generated by the fast-growing sensitive

cells at a rate proportional to the cell population and neutralized by the tolerant cells. The
resulting rate equation is given by:

dCStr

dt
= KStrS − KStr,dT (4)

where CStr is a hidden variable representing the stress level, and KStr and KStr,d are the rates
of stress generation and removal, respectively.

2.7. PSMSR and Cisplatin Response

To model the effect of cisplatin, we added a cisplatin dose-dependent cellular death
rate term to Equations (1) and (2) to obtain Equations (5) and (6). AUC stands for “area
under the curve” (AUC = cisplatin concentration × time of exposure), which represents the
memory effect of cisplatin exposure on the cellular growth (Figure 5A and Supplementary
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Text Section S2) [24–26]. Sigmoid(AUC) is the sigmoidal function (Equation (7)) that varies
between 0 and 1, depending on the magnitude of AUC, which multiplied by the scale factor
SCALE gives the cellular death rate. AUC5 and AUC95 represent the AUC values where
5% and 95% of the cisplatin death effect are achieved, respectively. The SCALE, AUC5 and
AUC95 parameters are specific for the sensitive and the tolerant cell types.

dS

dt
= −KaS + KbT + KGSS − SCALES × sigmoid(AUC)× S (5)

dT

dt
= −KbT + KaS + KGtT − SCALEt × sigmoid(AUC)× T (6)

sigmoid(AUC) =

{

1 + exp

[

ln19

(

1 − 2
AUC − AUC5

AUC95 − AUC5

)]}−1

(7)

In total, the PSMSR includes 9 unknown parameters (16, when including cisplatin
effect). We used roughly 2900 cell population data collected over several days of cellular
growth under various conditions to fit (Figure 4B,C) and analyzed the model parameters.
The fitting was performed using the global optimization method, Genetic Algorithm
(GA) [27], as implemented in the package GA in R [28] (also see Supplementary text
Section S2). The suitability of the PSMSR model in describing the experimental observations
was assessed by constructing the log likelihood profiles for each parameter as described in
Supplementary text Section S4 and Supplementary Figures S8 and S9.

Figure 5. Cont.
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Figure 5. Mathematical model for cisplatin resistance. (A) Schematic demonstration of AUC and

cellular death rate as function of AUC; (B,C) fitting of the experimental growth data where the

cells were co-cultured for three weeks; (B): sensitive cells; (C): tolerant cells; circles and lines repre-

sent the experimental and fitted trends respectively; (D) SCALE parameter as measure of cisplatin

sensitivity for the sensitive and the tolerant cells; the error bars represent 95% confidence limits

(E,F) simulation of intermittent and continuous cisplatin treatment according to the protocols de-

scribed in Figure 3; the initial sensitive to tolerant cell ratio was set to 4:1 with a total cell population

of 50,000. (G) An illustrative model depicting the presence (and absence) of group behavior among

sensitive and tolerant cells under varying conditions of stress and effects of continuous versus

intermittent therapy.

2.8. PSMSR in Monotypic and Heterotypic Cultures

Our experimental observations indicated that the sensitive and the tolerant cells be-
have quite differently when cultured alone when compared with coculture (Supplementary
Figure S10A–C). Therefore, by deconvoluting the growth trends using PSMSR, we examined
whether a few or all parameters of the model are different between the monotypic and the
heterotypic cultures. In general, several phenotypic parameters for the heterotypic cultures
were different in magnitude compared with the values for the monotypic cultures (Supple-
mentary Figure S10J). This indicates an influence of the cellular phenotypes on each other.
The parameters that showed a consistent difference between the mono- and heterotypic
cultures include K0 and Kb (the parameters for phenotypic switching), KGt0 (growth rate
for the tolerant phenotype) and Ks (rate of stress generation). One interesting observation
is that the growth rate for the tolerant phenotype in monotypic and 3-week co-cultures
is 7–10 times smaller than that of the sensitive phenotype (Supplementary Figure S10J),
reminiscent of a persister-like trait seen in microbial systems (please see “Discussion”).

By incorporating the cellular growth dynamics under different seeding ratios, The PSMSR
model has the potential to provide insights into the mechanism of phenotypic switching
in response to a changing microenvironment (Figure 4D–I). Here, we have calculated the
emergence of tolerant cell population from sensitive cells or vice versa in both monotypic
(Figures 4D,E and S11A,B,E,F) and heterotypic cultures (Figures 4G,H and S12A,B,F,G). Of
note, these cells are still experimentally detected as red or green, irrespective of their
true phenotypes. Since in our model, stress is the driver for phenotypic switching, the
switched phenotype cells only appear once stress builds up in the system over time
(Figures 4I and S12). In both monotypic and heterotypic cultures, the model predicts
a rapid switch by the tolerant cells to the sensitive phenotype (up to 97%, Supplementary
Figure S11E,B,D,G), while maintaining a low but steady tolerant population throughout
the observations (Figures 4E and S11B,F). Thus, we have seen how the cancer cells use
phenotypic switching to maintain the overall fitness of the community under different
stress levels. To maintain steady growth, stress must be mitigated, where switching to
the tolerant phenotype pays off, since the tolerant cells are capable of neutralizing stress.
However, the fraction of tolerant phenotype in the population is predicted to be low overall
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(10%, Figures 4G and S12C,H). This may be due to a balance between the necessity for
stress removal and the energy or other costs required to maintain the tolerant phenotype.

2.9. Effects of Phenotypic Switching and Stress Give Rise to Diverse Game-Theoretical Strategies in
Mixed Cell Populations

Cancer cell behavior is widely studied using game theory-based models where the
inter-species game strategies (competition and cooperation) are assumed to be constant
throughout the growth regime. A familiar example of such a model is the competitive
Lotka–Volterra equation, although more specialized models exist in the literature [29]. The
phenotypic diversity available to cancer cells suggest that their game strategic landscape
will be considerably complex, where the inter-species competition and cooperation are
dynamically altered based on changing scenarios.

Therefore, we asked whether the PSMSR model can capture this complex strategic
landscape. Due to the complexity of the PSMSR equations, it is not possible to analytically
derive evolutionary payoffs (such as those given by the Lotka–Volterra equations [30]).
Moreover, the payoffs are likely to vary over time, unlike in the classical game theoreti-
cal models, where they are assumed to be constant. Therefore, we followed a different
approach, where we numerically fitted the Lotka–Volterra equation to the growth rates
given by PSMSR over moving time windows (Supplementary Figure S13). At small (12 h)
and very large time windows (6 days), the fitting seemed to be worse, while at moderate
time windows such as 4–5 days, the fitting appeared reasonable between the two models
(Supplementary Figure S13). By fitting the growth rates obtained from the PSMSR model
to the competitive Lotka–Volterra equations, we determined the inter-species competition
parameters as function of time, for different sensitive to tolerant seeding ratios (Figure 4J,K).
Figure 4J shows that the tolerant cells are initially competitive towards the sensitive cells,
but they become cooperative after 2–3 days of growth. This coincides with the accumulation
of stress (Figure 4G) indicating that the microenvironment plays a major role in altering the
game strategies of the cancer phenotypes. Notably, the effect of the sensitive cells towards
the tolerant cells (Figure 4K) is significantly smaller in magnitude. Within the tumor, where
the microenvironment is significantly more complex than our experimental setup, multiple
agents such as the various cancer-associated macrophages and immune cells can dynami-
cally alter the game strategies adopted by the tumor cells and steer resistance evolution [31].
In summary, the PSMSR model, combined with the payoff calculation scheme described
above, demonstrates the diverse strategic landscape explored by the sensitive and tolerant
cells under varying cell population and stress levels.

2.10. PSMSR Model Demonstrates the Effectiveness of the Intermittent Cisplatin Therapy

Using the PSMSR model, we simulated the continuous and intermittent therapy
experiments, as explained before. We first calculated the model parameters by fitting to the
experimental growth trends measured in presence of cisplatin. The best agreement was
obtained when community cooperation such as phenotypic switching and stress removal
were turned off (Figure 5B,C). This implies that high cisplatin levels trigger the tolerant
cells to focus on their own survival, similar to other social communities where imminent
danger promotes self-survival. Also, at high cisplatin levels, the phenotypic switching to
sensitive is detrimental to the survival of the community. Together, these observations are
indicative of the adaptability of the cancer cells for survival in adverse environments. In
Figure 5D, the magnitudes of the SCALE parameter quantify the difference in cisplatin
sensitivity between the sensitive and the tolerant phenotypes.

Using the PSMSR model, we simulated the cisplatin dose cycles as explained in
Supplementary Figure S4. Analogous to the experimental observations, the tolerant cell
proportion increased with time in the continuous therapy, while it remained relatively
small and increased at a slower rate during the intermittent cycles (Figure 5E,F). Also, the
intermittent 2 cycles of cisplatin dosage created more tolerant cell population than the
single cycle, in agreement with the experiments (Figure 3D–F). While the actual magnitudes
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of the tolerant cell population in the simulations are different than in the experiments, the
qualitative behaviors agree. The quantitative difference between the predictions and the
experiments could be partly attributed to the growth attenuation due to confluence that
is not accounted for by the PSMSR model. Overall, these simulations show that the
PSMSR model is able to qualitatively reproduce the drug-induced behavior of the cancer
cell population.

3. Discussion

Several studies have applied evolutionary game theory to cancer [3–5,9,29,32–35]
but as far as we are aware, the adaptive strategies NSCLC cancer cells adopt in response
to environmental perturbations have not been investigated employing drug-naïve and
drug-tolerant cells. We demonstrated that the growth dynamics of these cells can only
be explained by invoking dynamic phenotypic switching upregulated by environmental
stress. Consistent with this assumption, the present data with the epigenetic regulator
together with our previous studies [16,36] and those from others [37,38], strongly sup-
port the possibility that the two cell types can stochastically switch their phenotypes via
non-genetic mechanisms.

The present study also highlights the complex behavioral landscape of cancer cells,
where the payoff strategies are dynamically evolving via phenotypic plasticity induced by
environmental pressure (Figure 4J,K). These inner level traits are cell frequency dependent
and can affect the carrying capacity of the population. The proposed PSMSR model can
provide important information about dynamic payoff strategies of multiple cellular phe-
notypes in a time and frequency-dependent manner. In contrast, traditional evolutionary
models (e.g., the competitive LV) hold those payoffs to be fixed but are otherwise useful in
understanding broad game strategies of the system, due to their mathematical simplicity.
Combining the PSMSR with a model analogous to LV can thus give additional insight
into the complex group behavior of multiple cellular phenotypes including the role of the
microenvironment, as was demonstrated in Figure 4J,K.

The mathematical modeling combined with the experimental observations demon-
strated that accumulated stress (induced by cell growth and microenvironment), promotes
phenotypic switching of sensitive cells to tolerant phenotypes. Thus, cells that switch
phenotypes help to partly neutralize the stress and allow the fast-growing sensitive cells
to proliferate, thereby sustaining the carrying capacity of the system. Thus, the resulting
carrying capacity is a function of both stress and the level of tolerant phenotype in the sys-
tem. Interestingly, the behavior of the tolerant cells appeared to be beneficial to the overall
community. They helped the proliferation of the sensitive cells by removing stress, and
they themselves adopt to a slower proliferation rate (when co-cultured for three weeks with
the sensitive cells, the parameter KGt0 in Table 1), so as to not compete for limited resources
(altruism). This altruistic behavior is even more beneficial in the crowded environment
of a tumor, where nutrients and oxygen could run low. The tolerant cells elucidated the
evolutionary strategy of bet-hedging where they display low evolutionary fitness under
normal conditions, but high fitness under stressful conditions, such as in the presence of
cisplatin [39]. The intermittent therapy simulations show that the PSMSR model reproduces
this behavior of the tolerant cell population (Figure 5E,F). Comparing the growth data
with and without cisplatin in conjunction with the PSMSR model, we also find that the
phenotypic switching (and the consequent altruism) may be turned off at high stress, when
cisplatin is administered. Therefore, it appears that the altruistic stress removal benefit by
the tolerant cells could be effective under normal conditions in the tumor, where a small
tolerant cell population benefits the drug-sensitive cells to sustain proliferation. However,
under the high stress of chemotherapy, such stress removal mechanisms may be insufficient
to sustain the sensitive cell viability. It is therefore prudent to turn off phenotypic switching
under such situations and allow the sensitive cells to become extinct and the tolerant cells
to proliferate. While bet-hedging strategies by drug-tolerant phenotypes are well discussed
in the literature [39], altruism by such phenotypes has hitherto been unexplored. There
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is overwhelming evidence that such tolerant persister phenotypes exist in the tumor in
small proportions, even in non-drug-resistant disease. However, it is not clear whether
they have a specific ecological role other than adding to the tumor heterogeneity, although
recent evidence indicates that persisters can facilitate escape from drug induced toxicity by
reversibly switching to slow cycling phenotypes [18].

Table 1. Model parameters and parameter search ranges for PSMSR, including the 95% confidence limits.

Condition K Kb KGs0 KGt0 Kstr Kstr,d a b g Sdrug AUCs
5 AUCs

95 SCALEs AUCt
5 AUCt

95 SCALEt

Heterotypic
0.049

± 0.0003
3.57

± 0.02
0.713

± 0.001
0.687

± 0.004
7.14 × 10−4

± 3 × 10−6
5.64 × 10−3

± 4 × 10−5
0.046

± 0.0004
0.038

± 0.0002
0.018

± 0.0006

Heterotypic,
3 weeks

0.052
± 0.0007

2.6
± 0.05

0.708
± 0.002

0.189
± 0.016

6.74 × 10−4

± 8 × 10−6
5.52 × 10−3

± 1 × 10−4
0.05

± 0.001
0.038

± 0.0006
0.02

± 0.0006

Heterotypic,
cisplatin

5 µM

0.033
± 0.0017

0
1.033

± 0.046
0.976

± 0.054
5.9 × 10−4

± 2.8 × 10−5 0 NA
0.04

± 0.003
0.034

± 0.003
108

± 14.5
239
± 12

1153
± 58

8.61
± 0.5

233
± 17

1201
± 49

5.79
± 0.6

Heterotypic,
3 weeks,
cisplatin

5 µM

0.033
± 0.0015

0
0.966
± 0.05

0.967
± 0.05

5.8 × 10−4

± 3.3 × 10−5 0 NA
0.039

± 0.002
0.036

± 0.003
96.8

± 9.95
271
± 14

1098
± 44

8.91
± 0.5

250
± 14

1098
± 47

6.89
± 0.7

Parameter
search
range

0–0.1 0–5 0–2 0–2 0–0.001 0–0.02 0–0.1 0–0.1 0–0.1 1–500 1–500
10–

1500
0.1–20 1–500

10–
1500

0.1–20

Taken together, the behavior of the tolerant cells provides novel insights into the
phenotypic traits in cancer that emerge due to survival pressure as well as the cost-benefit
basis of such evolution. Of note, when co-cultured for three weeks prior to starting the
experiment, both the sensitive and tolerant cell types had equal opportunity to switch their
strategy; either they could have reduced or increased their proliferation rate to compete,
but they followed an unexpected path where the sensitive cells remained unaffected, and
the tolerant cells reduced their proliferation rate. This strategy could be helpful because
most of the genotoxic drugs used for chemotherapy target actively dividing cells. This
behavior of tolerant cells resembles phenotypic switching behavior reminiscent of persisters
that are well known in microbial systems [40] and have more recently been recognized in
cancer [11,22,39,41,42].

Admittedly, a potential caveat of the current study is that the sensitive and the tolerant
cells were harvested from different patients and hence do not share a common genetic or
ecological origin. Therefore, an argument can be made that at least some of their behavior
in a co-culture environment could be attributed to the cell line specific differences. This
caveat aside, the current work depicts the behavioral complexity of cancer cells under
different ecological conditions and potential emergence of novel evolutionary strategies
that cannot be forecast without the aid of mathematical modeling. Most importantly, the
sensitive and the tolerant cells exhibit cooperation, which is unexpected given these cells
are from unrelated origins. When cells or species from different ecological environments are
brought together, the most expected behavior is either competition (e.g., invasive species)
or neutrality (if there is no resource limitation). In contrast, the observation of cooperation
by the tolerant cells informs us about their evolutionary behavior towards similar drug
sensitive cells in the patient of origin. Another notable fact is that the behavior of the
sensitive cells could be modulated by three weeks of co-culture with the tolerant cells. This
also informs us about the co-evolution of drug-sensitive and drug-tolerant phenotypes and
cannot be explained by the cell line specific differences. Nevertheless, we believe, further
experiments need to be performed to fully understand the extent of group behavior by
using cells from a common origin.

From a translational perspective, the present study also suggests that intermittent
rather than continuous chemotherapy may result in better outcomes in lung cancer. Al-
though it may not cure the patient of the disease, it could potentially result in a stable
disease that can be managed while sparing the patient the undesirable effects of exces-
sive chemotherapy. The fact that intermittent therapy has shown promise in other solid
tumors [7,9] should serve as a motivation to try it in lung cancer. Further in vitro and
animal experiments using sensitive and tolerant cells from the same patient will establish
the relevance of our observations in the broader context of cancer therapy.
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4. Materials and Methods

The details of the cell lines, antibodies and reagents used, the protocol used for live
cell imaging, the ratios in which the heterotypic cultures were grown and observed in real
time along with the details of the zebrafish microinjection, drug treatment, and animal
handling, are provided in full detail in the Supplemental Section. The cartoon images were
made using the BioRender software.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10

.3390/biom12010008/s1, Figure S1: Generating heterotypic cultures in 1:1 ratio and increasing T:S

ratios (2:1, 4:1, 8:1). Figure S2: Proliferative behavior of sensitive (S) and tolerant (T) cells mixed in

increasing T:S seeding ratios 12 hours prior to the start of the experiment. Figure S3: Proliferative

behavior of sensitive (S) and tolerant (T) cells grown in heterotypic cultures of increasing S:T seeding

ratios for 3 weeks. Figure S4: Schematic representation of the experimental design of continuous

versus intermittent therapy in 2D cultures. Figure S5: Comparison between PSMSR and the model by

Li et al. Figure S6: Sigmoidal stress relationships modeled in PSMSR. Figure S7: Fitting of PSMSR

with sigmoidal growth functions. Figure S8: Profile likelihood analysis for PSMSR parameters

for the experiments where the cells were monitored immediately after mixing. Figure S9: Profile

log-likelihood functions for PSMSR parameters for the experiments where the cells were monitored

immediately after mixing. Figure S10: Fitting of the PSMSR model to the cellular growth curves.

Figure S11: Predicted evolution of phenotypic switching and stress in systems seeded with sensitive

or tolerant cells alone. Figure S12: Predicted evolution of switched phenotypes and stress in mixed

culture experiments. Figure S13: Integration between the PSMSR and competitive Lotka-Volterra

models. Table S1: Changes in Tolerant: Sensitive ratios in co-culture. Table S2: Statistical significance

for Figure S2C–E. Table S3: Statistical significance for Figure S2G. Table S4: Statistical significance for

Figure S3A–C. Table S5: Statistical significance for Supplementary Figure S2E–G. Table S6: Statistical

significance for Supplementary Figure S3E–G. Table S7: Fitted parameters from the Li et al.’s model.

Table S8: Parameters for PSMSR using sigmoidal stress functions. Supplementary Text: Section S1:

Comparison of the Li et al model to PSMSR, Section S2: Details on PSMSR, Section S3: PSMSR

using sigmoidal stress relationship, Section S4: Profile likelihood of PSMSR parameters, Section S5:

Epigenetic modulation can distinguish drug sensitivity, tolerance and resistance in lung cancer,

Section S6: Experimental Materials and Methods.
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