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Introduction

Variation in animal body size has functional conse-
quences for a diverse array of life history attributes, 
and is therefore subject to an equally diverse array of 
selection pressures (Clutton-Brock & Harvey, 1983; 
Lindstedt & Swain, 1988). The multifaceted nature of 
adaptive variation in body size suggests that consistent 

spatial correlations with particular ecological variables 
are generally not to be expected. Nonetheless, geo-
graphic trends in size variation of many homeother-
mic species are well-characterized by empirical gener-
alizations such as Bergmann’s (1947) Rule. Mayr (1963: 
320) interpreted Bergmann’s Rule exclusively within 
the context of intraspecific variation: “… body size in 
geographically variable species averages larger in the 
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Abstract
Geographic variation in body size and sexual dimorphism of the short-nosed fruit bat (Cynopterus sphinx ) was investi-
gated in peninsular India. Bats were sampled at 12 localities along a 1,200 km latitudinal transect that paralleled the east-
ern flanks of the Western Ghats. The geographic pattern of variation in external morphology of C. sphinx  conforms to 
the predictions of Bergmann’s Rule, as indicated by a steep, monotonic cline of increasing body size from south to north. 
This study represents one of the first conclusively documented examples of Bergmann’s Rule in a tropical mammal and 
confirms that latitudinal clines in body size are not exclusively restricted to temperate zone homeotherms. Body size was 
indexed by a multivariate axis derived from principal components analysis of linear measurements that summarize body 
and wing dimensions. Additionally, length of forearm was used as a univariate index of structural size to examine geo-
graphic variation in a more inclusive sample of bats across the latitudinal transect. Multivariate and univariate size met-
rics were strongly and positively correlated with body mass, and exhibited highly concordant patterns of clinal variation. 
Stepwise multiple regression on climatological variables revealed that increasing size of male and female C. sphinx  was 
associated with decreasing minimum temperature, increasing relative humidity, and increasing seasonality. Although 
patterns of geographic size variation were highly concordant between the sexes, C. sphinx  also exhibited a latitudinal 
cline in the magnitude and direction of sexual size dimorphism. The size differential reversed direction across the latitu-
dinal gradient, as males averaged larger in the north, and females averaged larger in the south. The degree of female-bi-
ased size dimorphism across the transect was negatively correlated with body size of both sexes. Canonical discriminant 
analysis revealed that male- and female-biased size dimorphism were based on contrasting sets of external characters. 
Available data on geographic variation in the degree of polygyny in C. sphinx  suggests that sexual selection on male size 
may play a role in determining the geographic pattern of sexual size dimorphism.

Keywords: Bergmann’s Rule, Chiroptera, India, geographic variation, morphological variation, Pteropodidae, sexual se-
lection, Western Ghats
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cooler parts of the range of a species.” The original 
physiological explanation for this pattern was that sur-
face/volume ratio decreases as body size increases, so 
larger size reduces the rate of heat loss per unit body 
mass. Although the mass-specific rate of metabolism is 
inversely related to body mass, the total rate of metab-
olism (and hence, resource requirements) increases as 
a positive function of mass (McNab, 1971, 1999). Thus, 
the classical thermoregulatory explanation for Berg-
mann’s Rule is valid only if the total rate of energy in-
take more than offsets the increased metabolic de-
mands of large body size. 

Empirical assessments of Bergmann’s Rule primar-
ily have been based on geographic surveys of temper-
ate zone species at latitudes >20° (Zink & Remsen, 1986; 
Zeveloff & Boyce, 1988). However, altitudinal and latitu-
dinal clines in body size have also been documented in 
many non-migratory tropical birds (Mayr, 1944; Mayr & 
Vaurie, 1948; Ripley, 1950; Traylor, 1950; Moreau, 1957; 
Handford, 1983; Graves, 1991; Slowtow & Goodfriend, 
1996), suggesting that the adaptive basis of size varia-
tion may often involve factors other than (or in addition 
to) cold-tolerance. 

In hot aridlands and tropical environments, geo-
graphic variation in the size of small-bodied homeo-
therms may often reflect an adaptive response to the 
challenges of conserving metabolic water and/or maxi-
mizing heat dissipation (Hamilton, 1958, 1961; Brown & 
Lee, 1969 Power, 1969; James, 1970). Because the evap-
orative surface area/volume ratio is inversely propor-
tional to body size, this hypothesis predicts that larger 
size is advantageous in hot arid environments, and 
smaller size is advantageous in hot humid environ-
ments. Intraspecific variation in birds of the genus Vireo 
provides supporting evidence, as birds are smallest in 
the humid lowland tropics of Central America, and larg-
est in the hot, arid deserts of northern Mexico (Hamil-
ton, 1958, 1961). Likewise, in the 12 species of North 
American birds studied by James (1970), body size (as 
indexed by wing length) was smallest in the hot, humid 
southeast and exhibited a progressive increase across 
a westward gradient of increasing aridity and a north-
ward gradient of decreasing temperature. 

Opinions vary with respect to the statistical validity 
of Bergmann’s Rule in continental populations of birds 
(Wooler et al., 1985; Zink & Remsen, 1987; Aldrich & 
James, 1991) and mammals (McNab, 1971; Yom-Tov & 
Nix, 1986; Zeveloff & Boyce, 1988; Dayan et al., 1991). 
Rodents have been especially well-studied and often 
exhibit a considerable degree of clinal variation in body 
size (Brown & Lee, 1969; Straney & Patton, 1980; Owen, 
1989; Baumgardener & Kennedy, 1993; Smith et al., 
1995). However, the direction of change across climatic 
gradients is not always consistent with the classical in-

terpretation of Bergmann’s Rule (McNab, 1971; Sullivan 
& Best, 1997; Weigl et al., 1998). The adaptive basis of 
clinal variation in mammalian body size has most often 
been explained by invoking selection for thermoregu-
latory capabilities (Brown & Lee, 1969) or selection for 
fasting endurance in climatically severe environments 
(Boyce, 1979; Searcy, 1980; Lindstedt & Boyce, 1985; 
Millar & Hickling, 1990). Alternatively, clinal variation 
in body size may reflect an ecophenotypic response to 
geographic variation in the nutritional resource base 
(e.g., Patton & Brylski, 1987). In bats, empirical support 
for the validity for Bergmann’s Rule is marginal (re-
viewed by Bogdanowicz, 1990). Even among tropical 
species that maintain thermal homeostasis, bats may be 
expected to depart from the pattern typical of homeo-
therms on the basis of both biophysical and ecological 
considerations. The highly vascularized, naked wing-
membranes of bats increase the surface area/volume 
ratio relative to birds and non-volant mammals of sim-
ilar body mass. Thus, geographic variation in overall 
body and wing dimensions may have important conse-
quences for susceptibility to desiccation in hot, arid en-
vironments, and the capacity for heat dissipation in hot, 
humid environments. 

Because body size is such a critical determinant of re-
productive rates (Clutton-Brock & Harvey, 1983), size 
variation may often have highly divergent consequences 
for males and females. Within the constraints imposed 
by genetic correlation between the sexes (Lande, 1980), 
the direction and magnitude of sexual dimorphism ex-
pressed in a given population may often reflect the in-
terplay between fecundity selection on females and sex-
ual selection on males (Ralls, 1977; Price, 1984). In bats, 
both male-biased and female-biased size dimorphism 
have been documented (Myers, 1978; Williams & Find-
ley, 1979; Findley & Wilson, 1982; Ruedas et al., 1994; 
Willig & Hollander, 1995), although the underlying 
causes of sex-limited selection pressures have not been 
demonstrated for any species. Myers (1978) suggested 
that female-biased size dimorphism in vespertilionid 
bats reflects an adaptive response to the aerodynamic 
challenges of flight during pregnancy (and lactation, if it 
involves aerial transport of suckling young). According 
to this hypothesis, larger size of females is an allometric 
effect of selection for reduced wing-loading. By contrast, 
Williams & Findley (1979) argued that increased female 
size in vespertilionid bats reflects an adaptive response 
to the metabolic demands of maintaining thermal ho-
meostasis during pregnancy. Both of these hypotheses 
are potentially applicable to a wider range of bat spe-
cies beyond the Vespertilionidae. In addition to fecun-
dity selection on females, sexual selection on males may 
also be an important driving force in the evolution of 
sexual dimorphism in bats. If body size influences suc-
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cess in territory acquisition and/or mating access to re-
ceptive females, the opportunity for sexual selection on 
male size is expected to be greatest in species charac-
terized by highly polygynous mating systems (e.g., Mc-
Cracken & Bradbury, 1981; Storz et al., 2000b). 

Here we report results of a field-based study of mor-
phological variation in the short-nosed fruit bat, Cynop-
terus sphinx  Vahl (Chiroptera: Pteropodidae). The 
primary objective of this study was to examine ecogeo-
graphic correlates of variation in overall body size within 
and between the sexes, and to test whether the observed 
patterns conform to Bergmann’s Rule. Cynopterus sphinx  
has an extensive continental distribution across South 
Asia and is peripherally distributed along the western 
margin of the Malay Archipelago (Storz &Kunz, 1999). 
This species exhibits an extensive degree of variation in 
body size, although the nature and geographic pattern 
of this variation has not been investigated previously. 
This analysis of size variation in Cynopterus sphinx  per-
mits an evaluation of the validity of Bergmann’s Rule in 
a tropical mammal, and provides the opportunity to test 
predictions about patterns of clinal variation in body 
size across temperature and humidity gradients. 

Methods 

Area of Study and Sampling Design 

The Western Ghats span a linear distance of approxi-
mately 1,600 km along the western coast of peninsular 
India, from the Tapti River (21°N) to the southern tip 
of the subcontinent (8°N). The crestline averages 900-
1,500 m in elevation and intercepts the southwest mon-
soon, thereby creating a rainshadow across the semi-
arid plains to the east. At lower elevations along the 
eastern flanks of the Ghats, tropical moist-deciduous 
and dry-deciduous forest typically grade into tropical 
thorn-scrub vegetation at the mountain/plains inter-
face (Mani, 1974b; Subramanyam & Nayar, 1974). Penin-
sular India is characterized by a smooth north-to-south 
gradient of increasing daily minimum temperature and 
increasing humidity (Mani, 1974a; Ramdas, 1974). The 
annual range of ambient temperature also varies with 
latitude, decreasing from the more seasonal Deccan 
Plateau to the more equable temperature regime of the 
Tamilnad Plains. 

Bats were sampled along a latitudinal transect that 
spanned a distance of approximately 1,200 km along 
the eastern flanks of the Western Ghats, from 18°32’N, 
73°51’E (Pune) to 8°11’N, 77°30’E (Nagercoil; Figure 1). 
Bats were sampled at a total of 12 localities along this 
transect at elevations ranging from 30 to 900 m, in habi-
tats ranging from semi-arid tropical thorn forest to trop-
ical deciduous forest at the mountain/plains interface. 

The transect spanned the Nilgiri Hills, a transverse 
range that forms the point of convergence between the 
Western and Eastern Ghats and demarcates the Deccan 
Plateau from the uplands and coastal plains of Tamil 
Nadu to the South. 

Bats were trapped on foraging grounds using 2 m 
× 6m nylon mistnets that were deployed in areas with 
fruit-bearing trees. In Pune and Palayamkottai, bats 
were also trapped in diurnal foliage-roosts as described 
in Storz et al. (2000a,b). Each individual was classified 
as juvenile or adult based on the degree of fusion of the 
metacarpal-phalangeal epiphyses (Anthony, 1988). Only 
adults were used in the subsequent analysis of morpho-
logical variation. With the exception of those retained as 
voucher specimens, bats were released at the site of cap-
ture after processing. 

Figure 1. Map of peninsular India showing localities where 
Cynopterus sphinx was sampled. Names of sampling localities, 
geographic coordinates, and elevation (recorded to the nearest 
10 m) are as follows: 
1. Pune 	 18°32’N, 73°51’E, 600 m
2. Kolhapur 	 16°42’N, 74°13’E, 560 m 
3. Belgaum 	 15°54’N, 74°36’E, 900 m 
4. Sorab 	 14°05’N, 75°24’E, 620 m 
5. Shimoga 	 13°56’N, 75°35’E, 650 m 
6. Thithimathi 	 12°05’N, 76°00’E, 860 m 
7. Mysore 	 12°18’N, 76°37’E, 780 m 
8. Metupalayam 	 11°18’N, 76°59’E, 450 m 
9. Othakadai 	  9°56’N, 78°07’E, 150 m 
10. Kuttalam 	  8°58’N, 77°18’E, 170 m 
11. Palayamkottai 	  8°44’N, 77°42’E,   50 m 
12. Nagercoil	  8°11’N, 77°30’E,   30 m 
Sampling localities were located in the states of Maharashtra 
(1-2), Karnataka (3-7), and Tamil Nadu (8-12). 
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Analysis of Morphometric Variation 

Morphometric variation was assessed in C. sphinx  by 
examining eight external characters defined in Kitch-
ener & Maharadatunkamsi (1991) that jointly summa-
rize overall body dimensions and wing area: length of 
tibia, length of forearm, length of metacarpal of digits 2-
5 (DIG2-DIG5), proximal phalanx of digit 3 (DIG3P1), 
and body mass. External characters were measured to 
the nearest 0.1 mm using dial calipers and body mass 
was measured using a 100 g spring balance. All mea-
surements were taken by JFS. All variables were log10-
transformed and screened for normality, equality of 
variances, and equality of variance-covariance matri-
ces. Body mass was considered separately from other 
external characters. Morphological variation within and 
between the sexes was initially examined by means of 
multivariate analysis of variance (MANOVA) and uni-
variate ANOVA with two-way factorial design. Sex and 
geographic locality were included as fixed-effect factors 
(model I ANOVA). The factorial design provided tests 
of three null hypotheses: (1) no effect of geographic lo-
cality, (2) no sexual dimorphism, and (3) no geographic 
variation in sexual dimorphism (as indicated by locality 
× sex interaction). 

In studies of geographic variation, a variety of differ-
ent multivariate and univariate approaches have been 
used to measure animal body size. In morphological 
studies of vertebrates, overall body size is typically in-
dexed by a multivariate axis derived from external, os-
teometric, and/or craniometric characters (Mosimann 
& James, 1979; Grant et al., 1985; Rising & Somers, 1989; 
Freeman & Jackson, 1990; Patton & Smith, 1992). In bats, 
a multivariate axis that summarizes body and wing di-
mensions should provide a functionally relevant mea-
sure of structural size for the purpose of testing predic-
tions related to Bergmann’s Rule. Accordingly, principal 
components analysis was performed on the variance-co-
variance matrix of log10-transformed variables to extract 
an allometric size vector. The analysis was conducted 
separately for each sex. Variation in the first principal 
component (PC1) was analyzed for a subset of the total 
sample of bats. Length of forearm was used as a univar-
iate index of structural size to examine geographic vari-
ation in the full sample of bats across the transect. If PC1 
and length of forearm do, in fact, provide accurate and 
functionally meaningful representations of overall struc-
tural size, both metrics should covary with body mass in 
a positive, linear fashion (Rising & Somers, 1989). This 
relationship was tested by means of bivariate correlation 
analysis. Body mass combines information about overall 
structural size in addition to a more variable component 
that reflects nutrient-reserve storage (Piersma & David-
son, 1991). Thus, in order to control for seasonal and in-

terannual variation in reproductive condition and nutri-
ent stores, the analysis of body mass was restricted to 
males and nonpregnant females sampled during a sin-
gle 8 week period following the dry-season parturition 
period (March 4 through May 2, 1998). 

Variation among localities in PC1 and length of fore-
arm was examined using single-classification ANOVA. 
The geographic pattern of size variation among partic-
ular localities was investigated using Hochberg’s GT2-
method for multiple comparisons (Sokal & Rohlf, 1995: 
247-252). The results of correlation analyses are pre-
sented as Pearson’s product-moment correlation coeffi-
cients. Stepwise multiple regression analysis was used 
to examine the relationship between body size of males 
and females (as indexed by PC1) and the following cli-
matological variables: mean annual temperature, mean 
maximum daily temperature, mean minimum daily 
temperature, annual range in temperature, mean an-
nual rainfall, mean maximum rainfall during the wet-
test month, mean minimum rainfall during the driest 
month, and annual range in total rainfall. Climatological 
data were obtained from meteorological stations located 
within 30 km of each sampling locality. Weighted mean 
values of ecogeographic variables for each locality were 
used for pooled samples. To control for multicolinearity, 
temperature and precipitation variables were reduced 
to a smaller set of orthogonal vectors by means of prin-
cipal components analysis on the correlation matrix. Cli-
matic principal components were used as independent 
variables in the multiple regression analysis. 

Both multivariate and univariate tests of sexual di-
morphism were conducted on samples from each gen-
eral locality. The degree of sexual dimorphism in body 
size was quantified as the difference between females 
and males in PC1 factor scores, obtained by conducting 
the principal components analysis on the pooled sam-
ple of both sexes. Canonical discriminant analysis was 
used to determine the relative contributions of each lin-
ear combination of morphometric variables to the ob-
served pattern of multivariate differentiation between 
the sexes. Factor loadings on the first canonical variate 
axis provided a measure of the relative discriminatory 
power of individual characters. However, high commu-
nalities among variables can produce factor loadings 
that belie the true discriminatory power of individual 
characters that differ between the sexes. Following Wil-
lig & Hollander (1995), the relative importance of each 
character in discriminating between the sexes was as-
certained by the magnitude of correlation between the 
original variable and individual scores on the canonical 
variate axis. The square of the correlation coefficient (im-
portance value) measures the fraction of the variation 
in discriminant-function scores accounted for by varia-
tion in the original morphometric character. The consis-
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tency with which a particular set of characters contrib-
utes to the expression of secondary sexual dimorphism 
can then be examined by comparing profiles of trait-
specific importance values among different populations. 
A highly positive correlation between profiles of impor-
tance values in different populations is interpreted as 
evidence for geographical uniformity in the morpholog-
ical basis of sexual dimorphism. The analyses were con-
ducted separately on latitudinal subdivisions of transect 
point samples. 

Results 

A total of 757 adult C. sphinx  were sampled along the 
transect. The multivariate analysis of external morphol-
ogy was based on a subset of 256 bats while length of 
forearm was analyzed for the full sample. In all analy-
ses, samples of C. sphinx  from Sorab and Shimoga were 
pooled. Additionally, when males and females were 
considered separately in multivariate and univariate 
analyses, adjacent point samples were pooled as fol-
lows: Kolhapur/Belgaum, Thithimathi/Mysore, and the 
three southernmost localities (Kuttalam/Palayamkot-
tai/Nagercoil). These pooled samples compensated for 
unbalanced representation of the sexes at individual lo-
calities. Variance component analysis confirmed that 
each grouping of adjacent localities constituted a statis-
tically homogeneous subset of transect point samples. 

The multivariate analysis was based on log10-trans-
formed values of all external characters except body 
mass. Univariate normality and equality of error vari-
ances was confirmed for each variable. No inequality of 
variance-covariance matrices was detected in samples of 
C. sphinx  (Box’s test: M = 414.627; F = 1.089; df = 308, 
15444; P = 0.139). With regard to log10-length of forearm 
for the full sample of bats, no statistically significant de-

partures from normality were detected (one-sample Kol-
mogorov-Smirnov test: Z = 1.305; n = 757; P = 0.066) and 
no inequality of variances among point samples was ev-
ident (Levene’s test: F = 0.675; df = 11,  745; P = 0.763). 
Length of forearm of males ranged from 61.8 mm to 79.3 
mm, a difference of 28%. In females, length of forearm 
ranged from 60.2 mm to 80.1 mm, a difference of 33% 
(Table 1). Variation in body mass for the 1998 subset of 
males and nonpregnant females also conformed to a log-
normal distribution (one-sample Kolmogorov-Smirnov 
test: Z = 0.994; n = 329; P = 0.277) and exhibited a rela-
tively greater range of variation: 75% in males (38.7 g–
67.9 g) and 78% in non-pregnant females (39.0 g–69.5 g). 

The two-way MANOVA revealed a highly significant 
effect of locality, a marginally significant effect of sex, 
and a highly significant locality × sex interaction (Table 
2A). Univariate F-tests on each external character of C. 
sphinx  revealed a uniformly high degree of heterogene-
ity among localities (P < 0.001 for all variables). Single-
variable tests also revealed statistically significant differ-
ences between the sexes for DIG3, DIG4, and DIG5 (P < 
0.05) and a significant locality × sex interaction for DIG4 
(P < 0.05). The geographic pattern of multivariate differ-
ences between the sexes is evaluated in more detail be-
low. Univariate analyses of length of forearm also re-
vealed a high degree of heterogeneity among localities, 
but differences between the sexes were not statistically 
significant (Table 2B). Males and females were treated 
separately in subsequent analyses. 

Geographic Variation in Body Size 

In both sexes of C. sphinx, the first axis of the principal 
components analysis (E1) was clearly interpretable as 
an overall size vector. Factor loadings for all characters 

Table 1. Statistics describing length of forearm of adult Cynopterus sphinx  sampled from peninsular India. Statistics are reported 
for general localities used in the univariate ANOVA. The southern Tamil Nadu group comprises samples from Kuttalam, 
Palayamkottai, and Nagercoil. 

                                               Males                                                                                Females 

Locality                                 Mean ± 1 SD       Range      Variance         n                 Mean ± 1 SD       Range          Variance              n 
                                               (mm)                                                                                 (mm) 

Pune 	 74.3 ± 2.1 	 70.5–79.3 	 4.51 	 37 	 73.9 ± 2.0 	 68.2–80.1 	 4.01 	 249 
Kolhapur/Belgaum 	 71.7 ± 1.9 	 67.2–74.5 	 3.52 	 16 	 71.6 ± 2.2 	 66.3–75.7 	 4.62 	   48 
Sorab/Shimoga 	 69.6 ± 2.5 	 65.8–74.4 	 6.38 	 21 	 69.6 ± 1.8 	 66.8–73.5 	 3.19 	     9 
Thithimathi/Mysore 	 69.7 ± 2.0 	 64.5–72.5 	 4.16 	 14 	 69.9 ± 2.0 	 65.5–74.6 	 4.00 	   26
Metupalayam 	 68.4 ± 2.5 	 64.4–72.8 	 6.46 	 11 	 69.2 ± 2.2 	 63.0–72.5 	 4.82 	   19 
Othakadai 	 68.2 ± 1.8 	 65.0–72.1 	 3.25 	  20 	 69.7 ± 1.7 	 67.1–72.4 	 2.95 	   11 
Southern Tamil Nadu 	 67.5 ± 2.1 	 61.8–74.4 	 4.40 	 122 	 68.0 ± 2.1 	 60.2–73.9 	 4.52 	 154 
Total 	 69.3 ± 3.2 	 61.8–79.3 	 10.42 	 241 	 71.4 ± 3.3 	 60.2–80.1 	 10.89 	 516
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were uniformly high and positive (Table 3). Moreover, 
PC1 was strongly and positively correlated with body 
mass in males (r = 0.820, n = 100, P < 0.001) and non-
pregnant females (r = 0.741, n = 137, P < 0.001), as il-
lustrated in Figure 2. Single-classification ANOVA re-
vealed a high degree of heterogeneity in mean PC1 
among localities for both males (F = 21.963, df = 5,  94, 
P < 0.001)and females (F = 27.067, df = 5, 150, P < 0.001). 
Mean PC1 scores for both sexes exhibited a progressive 
increase from south to north, indicating a latitudinal 
cline in overall body size (Figure 3).Multiple compari-
sons using Hochberg’s GT2-method revealed similar 
geographic patterns of size variation in both sexes. The 
interval between Sorab/Shimoga and Kolhapur/Bel-

gaum represented a statistically significant demarcation 
between southern and northern subdivisions of the tran-
sect (P < 0.05). In females, samples from Kolhapur/Del-
gaum and Pune were also identified as statistically dis-
tinct subsets. 

The pattern of clinal variation in body size was fur-
ther substantiated by analysis of length of forearm for 
the full sample of bats across the transect. Length of 
forearm exhibited high factor loadings on PC1 (Table 3) 
and a low coefficient of variation relative to other exter-
nal characters, and therefore provided a useful univar-
iate index of overall body size. Length of forearm also 
was strongly and positively correlated with body mass 
in males (r = 0.814, P < 0.01, n = 100) and nonpregnant 
females (r = 0.731, P < 0.01, n = 229), as illustrated in 
Figure 4. The magnitude of correlations remained sim-
ilar even when considering the full sample of bats col-
lected in different seasons and different years (males: r 
= 0.708, P < 0.001, n = 241, and non-pregnant females: 
r = 0.741, P < 0.001, n = 401). In accordance with the 
multivariate analysis, single-classification ANOVA re-
vealed a significant degree of heterogeneity among lo-
calities in mean length of forearm for males (F = 51.005, 
df = 6,  234, P < 0.001) and females (F = 136.532, df = 
6, 509, P < 0.001). Differentiation among localities in 
length of forearm was chiefly attributable to a mono-
tonic cline in body size (Figure 5). Mean length of fore-
arm at Pune (73.9 mm), the northernmost locality on 
the transect, was 9.8% larger than at Nagercoil (67.3 
mm), the southernmost locality. Multiple comparisons 
revealed that Pune exhibited the greatest degree of dif-
ferentiation in samples of both sexes. The remaining 
localities were grouped into three statistically homo-
geneous subsets, all of which were partially overlap-
ping. As illustrated in Figure 6, body mass exhibited a 
highly concordant pattern of clinal variation relative to 
PC1 and length of forearm. 

Table 2. Effects of geographic locality and sex on variation in external morphology of Cynopterus sphinx  as revealed by MANOVA 
and univariate ANOVA with two-way factorial design. The multivariate analysis is based on seven external characters for a subset 
of bats (n = 256). The univariate analysis is based on length of forearm for the full sample of bats (n = 757). 

(a) Multivariate analysis  	 Effect  	 df 	                Pillai’s trace 	 F 	 P 

	 Locality 	 35, 1210 	 0.958 	 8.190 	 <0.001 
	 Sex 	 7, 238 	 0.056 	 2.021 	 0.053 
	 Locality × sex 	 35, 1210 	 0.266 	 1.946 	 0.001 

(b) Univariate analysis 	 Effect 	 df 	                Type III SS 	 F 	 P 

	 Locality 	 10 	 0.138 	 84.506 	 <0.001 
	 Sex 	 1 	 3.893 × 10–4	 2.376 	 0.124 
	 Locality × sex 	 10 	 2.467 × 10–3	 1.506 	 0.133 
	 Error 	 735 	 0.120

Table 3. Factor loadings of seven external variables on the 
first principal component axis (PC1) computed for males and 
females of Cynopterus sphinx. Principal components analysis 
was conducted on each sex separately, and PC1 was extracted 
from the variance-covariance matrix of log10-transformed 
variables. See text for abbreviations of characters. 

                                                             Males                      Females 
                                                             (n = 100)                 (n = 156) 
Variable                                                PC1                         PC1 

Length of forearm 	 0.920 	 0.903 
Length of tibia 	 0.907 	 0.883 
Length of DIG2 	 0.954 	 0.929 
Length of DIG3 	 0.969 	 0.938 
Length of DIG3P1 	 0.865 	 0.914 
Length of DIG4 	 0.961 	 0.921 
Length of DIG5 	 0.948 	 0.834 
Variance explained (%) 	 87.0 	 81.7 
Eigenvalue 	 6.09 	 5.72



Cl i n a l v a r i a t i o n i n b o d y s i z e  a n d s e x u a l d i m o r p h i s m i n In d i a n f r u i t  b a t,  C. s p h i n x    23

Influence of Ecogeographic Factors on Body Size 

The first axis of the principal components analysis on 
temperature variables (PC1-T) explained 79.2% of the 
variance among localities (eigenvalue = 3.96). Correla-
tions between the original variables and PC1-T factor 
scores were high and positive (maximum temperature, 
r = 0.523; minimum temperature, r = 0.985; average tem-
perature, r = 0.741; wet-bulb temperature, r = 0.943), ex-
cept for annual range of temperature (an index of sea-
sonality), which exhibited a strong negative correlation 
(r = –0.677). PC1-T was interpreted as an overall tem-
perature/equability vector. The first axis of the princi-
pal components analysis on rainfall variables (PC1-R) 
explained 73.1% of the variance among localities (eigen-

value = 2.92). Correlations between original variables 
and PC1-R factor scores were uniformly high and pos-
itive (maximum rainfall, r = 0.986; minimum rainfall, r 
= 0.942; average rainfall, r = 0.971; annual range of rain-
fall, r = 0.848). PC1-R was therefore clearly interpretable 
as an overall rainfall vector. The second axis of the prin-
cipal components analysis on rainfall variables (PC2-R) 
explained 26.0% of the variance among localities (eigen-
value = 1.04). This vector contrasted minimum rainfall (r 
= –0.277) and average rainfall (r = –0.167), against maxi-
mum rainfall (r = 0.212) and annual range of rainfall (r = 
0.573). PC2-R was interpreted as a measure of seasonal-
ity of rainfall. Principal components analysis of temper-
ature and rainfall variables thus produced an ordination 
of sampling localities across a north-to-south gradient 
of increasing minimum, maximum, and mean temper-
ature, increasing relative humidity (as indexed by wet-
bulb temperature), and decreasing seasonality of tem-
perature and precipitation. 

Associations between PC1 and ecogeographic vari-
ables were highly concordant between the sexes (Table 
4). The inverse correlation between latitude and longi-
tude reflects the northwest to southeast orientation of the 
transect. Similarly, elevation along the transect increases 
as a positive function of latitude. Partial correlation anal-
ysis revealed that when latitude was held constant, lon-
gitude and elevation were not significantly associated 
with PC1 scores of males (longitude, r = -0.227, P = 0.824; 
elevation, r = –0.141, P = 0.165) or females (longitude, r 
= 0.071, P = O.381; elevation, r = –0.064, P = 0.426). With 
regard to climatological variables, PC1 scores of males 
and females were most strongly correlated with the 
temperature vector (PC1-T)and the second rainfall vec-
tor (PC2-R). These same variables emerged as the best 
predictors of size variation in the stepwise multiple re-
gression analysis (Table 5). The magnitude and sign of 

Figure 2. Bivariate plots of log10-body mass vs. PC1 for (A) males (n = 100) and (B) nonpregnant females (n = 156) of Cynopterus 
sphinx. All bats were sampled during an 8-week period in the 1998 dry season. Least squares linear regression lines are shown for 
illustration.

Figure 3. Model I linear regression of PC1 against latitude for 
males (n = 100) and females (n = 156) of Cynopterus sphinx sam-
pled in peninsular India. 
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the standardized regression coefficients indicated that 
increasing body size of both sexes was primarily associ-
ated with decreasing minimum temperature, decreasing 
relative humidity, and increasing seasonality. 

Geographic Variation in Sexual Dimorphism 

A statistically significant degree of sexual dimorphism 
in overall body dimensions of C. sphinx  was detected 
in the northernmost locality (Pune), and in two of the 
southern localities (Table 6). The size differential re-
versed direction across the latitudinal gradient, as males 
averaged slightly larger in the north, and females aver-
aged slightly larger in the south. The degree of female-
biased size dimorphism across the transect was nega-
tively correlated with body size (PC1) of both males (r 
= –0.911, P = 0.011) and females (r = –0.830, P = 0.041). 

Variation between the sexes in length of forearm mir-
rored the latitudinal pattern revealed by the multivari-
ate analysis; males averaged larger in the northernmost 
localities, and females averaged larger in all localities 
< 15°N. The female- biased size differential in length 
of forearm was statistically significant in Othakadai (F 
= 5.302; df = 1, 29; P = 0.029) and approached statistical 
significance in the southern Tamil Nadu localities (F = 
3.419; df = 1, 274; P = 0.066). The degree of female-biased 
size dimorphism in length of forearm across the transect 
was negatively correlated with mean values for males (r 
= –0.616, P = 0.140) and females (r = –0.777, P = 0.040). 

Having revealed a significant locality × sex interac-
tion by means of two-way MANOVA (Table 2A), a ca-
nonical discriminant analysis was used to investigate the 
geographic pattern of sexual dimorphism in C. sphinx  in 
more detail. Point samples on the transect were pooled 

Figure 4. Bivariate plots of log10-body mass vs. log10-length of forearm for (A) males (n = 100) and (B) nonpregnant females (n = 
229) of Cynopterus sphinx . All bats were sampled during an 8 week period in the 1998 dry season. Least squares linear regression 
lines are shown for illustration. 

Figure 5. Model I linear regression of log10-length of forearm 
against latitude for males (n = 100) and females (n = 156) of 
Cynopterus sphinx  sampled in peninsular India. 

Figure 6. Model I linear regression of log10-body mass against 
latitude for males (n = 100) and females (n = 229) of Cynopterus 
sphinx  sampled in peninsular India during an 8 week period 
in the 1998 dry season. 
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into three latitudinal subdivisions: northern (>15°N), 
central (11–15°N), and southern (<11°N). Each of the 
three analyses included ≥ 30 individuals of each sex. The 
canonical discriminant analysis revealed statistically sig-
nificant differences between the sexes in the southern 
subdivision (eigenvalue = 0.322, Wilks’ Λ = 0.756, df = 
7, P = 0.030), but not in the central (eigenvalue = 0.171, 
Wilks’ Λ = 0.854, df = 7, P = 0.178) or northern subdivi-
sions (eigenvalue = 0.096, Wilks’ Λ = 0.912, df = 7, P = 
0.140). Within each subdivision, the direction of the size 

differential was uniform across all characters (Figure 7). 
Males averaged larger in all external characters in the 
northern subdivision, and females averaged larger in all 
characters in the central and southern subdivisions. Pro-
files of importance values in the northern subdivision 
were negatively correlated with those of the central (r = 
–0.228, P = 0.622) and southern subdivisions (r = –0.572, 
P = 0.179). This pattern indicated that male- and female-
biased size dimorphism were based on contrasting sets 
of external characters. Female-biased size dimorphism 

Table 4. Pearson product-moment correlations among body size of male and female Cynopterus sphinx  (as indexed by PC1), 
geographic variables, and principal components of variation in temperature (PC1-T), and rainfall (PC1-R and PC2-R). 

                     PC1 males     PC1 females     Latitude     Longitude     Elevation      PC1-T           PC1-R            PC2-R 

PC1 males 	 1.00 	 0.986** 	 0.691**	  –0.642** 	 0.414** 	 –0.450** 	 0.134 	 0.327** 
PC1 females 		  1.00 	 0.660** 	 –0.597** 	 0.302**	  –0.450** 	 0.037 	 0.472** 
Latitude 			   1.00 	 –0.934** 	 0.520** 	 –0.780** 	 0.190* 	 0.502** 
Longitude 				    1.00 	 –0.582** 	 0.773** 	 –0.378** 	 –0.444** 
Elevation 					     1.00 	 –0.892**	  0.317**	  0.039 
PC1-T 						      1.00 	 –0.262** 	 –0.036 
PC1-R 							       1.00 	 0.052 
PC2-R 								        1.00 

* P < 0.05, ** P < 0.01

Table 5. Results of stepwise multiple regression analyses of body size of male and female Cynopterus sphinx  (as indexed by PC1) 
against climatic variables. The following stepwise criteria were employed probability of F-to-enter < 0.050, and probability of F-to-
remove > 0.100. The standardized regression coefficients express the importance of particular independent variables in determining 
the value of PC1, when other variables are held constant. The coefficients of multiple determination (R2 and adjusted R2) for all 
entered variables are given in parentheses below. These coefficients express the fraction of the total variability of PC1 attributable 
to the effects of the independent variables, as defined by the regression model fit to the data. 

	 PC1 (Males) 	 PC1 (Females) 

Climatological variables 	 Standardized regression coefficient 	 Standardized regression coefficient 

PC1-Temperature 	 –0.615 (P < 0.001) 	 –0.462 (P < 0.001) 
PC1-Rainfall 	   0.018 (P = 0.817) 	 –0.108 (P = 0.094) 
PC2-Rainfall 	   0.524 (P < 0.001) 	   0.461 (P < 0.001) 
	 (R2 = 0.451, adjusted R2 = 0.433) 	 (R2 = 0.421,adjusted R2 = 0.410)

Table 6. Degree of sexual dimorphism of Cynopterus sphinx  as revealed by two-sample MANOVA for six general localities. Direction 
of the size differential indicates which sex averages larger in size across all external characters. 

Localities (North to South)         Direction        df                    Hotelling’s Te              Exact F                         P 

Pune 	 ♂ > ♀ 	 7,  53 	 0.242 	 2.417 	 0.032 
Kolhapur/Belgaum 	 ♂ > ♀ 	 7,  56 	 0.133 	 1.222 	 0.306 
Sorab/Shimoga 	 ♂ < ♀ 	 7,  22 	 0.233 	 0.953 	 0.488 
Thithimathi/Mysore 	 ♂ < ♀ 	 7,  32 	 0.386 	 2.879 	 0.019 
Metupalayam 	 ♂ < ♀ 	 7,  22 	 0.574 	 4.227 	 0.004 
Othakadai 	 ♂ < ♀ 	 7,  23 	 0.316 	 1.516 	 0.211 
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was primarily attributable to a proportional increase in 
the area of the hand-wing, as indicated by the high im-
portance values for DIG3, DIG4, and DIG5 in the south-
ern subdivision. By contrast, male-biased dimorphism 
in the northern subdivision was primarily attributable 
to length of tibia and DIG2, although importance val-
ues were low for most characters. Although direction 
of the size differential was similar in the central and 

southern subdivisions, profiles of importance values 
were not strongly correlated (r = 0.630, P = 0.129). Lack 
of statistical significance likely reflects the fact that the 
overall degree of sexual size dimorphism was rela-
tively subtle. 

Discussion 

Geographic Variation in Body Size 

The pattern of geographic variation in the external mor-
phology of Cynopterus sphinx  conforms to Bergmann’s 
Rule, as indicated by a monotonic cline of increasing 
body size from south to north. Multivariate and univar-
iate indices of structural size were strongly and posi-
tively correlated with body mass, and exhibited highly 
concordant patterns of clinal variation. This study repre-
sents one of the first conclusively documented examples 
of Bergmann’s Rule in a tropical mammal and provides 
further confirmation that latitudinal clines in body size 
are not exclusively restricted to temperate zone homeo-
therms (Graves, 1991). 

In pteropodid bats, basal metabolic rate is highly 
size-dependent and medium-sized frugivorous species 
such as C. sphinx  are typically characterized by precise 
regulation of body temperature (McNab, 1989; McNab 
& Bonaccorso, 1995). Because the energetics of tempera-
ture regulation have important consequences for fecun-
dity, gestation period, and rates of postnatal growth in 
bats (McNab, 1982; Kunz, 1987), the ecologically optimal 
body size of non-migratory species may be expected to 
vary geographically in response to broad-scale climatic 
gradients. However, pteropodid bats are also known 
to employ a diverse array of physiological and behav-
ioral strategies to maintain heat and water balance in 
extreme environments (McNab & Bonaccorso, 1995; 
Ochoa-Acuña & Kunz, 1999), so adaptive adjustments 
to environmental challenges may not necessarily entail 
changes in gross morphology. Although many ptero-
podid species occupy day-roosts in highly exposed sit-
uations such as tree canopies, roosting groups of C. 
sphinx  typically aggregate in confined spaces such as 
tree hollows or modified foliage roosts (Bhat & Kunz, 
1995; Balasingh et al., 1995; Storz et al., 2000a,b). Cynop-
terus sphinx  has a polyestrus reproductive cycle and 
adult females are either pregnant or lactating through-
out most of the year (Storz & Kunz, 1999). Aggregation 
into tightly clustered groups can significantly alter the 
microclimate of diurnal roosts, thereby minimizing en-
ergetic costs to reproductive females and mitigating the 
effects of adverse temperature and humidity conditions 
in the outside environment (Kunz, 1982). With regard to 
the thermoregulatory capacities of birds and mammals, 
Scholander (1955) argued that such behavioral adjust-

Figure 7. Profiles of importance values for seven external char-
acters that distinguish between the sexes in Cynopterus sphinx. 
Point samples on the transect were pooled into three latitudi-
nal subdivisions: A, northern (>15°N); B, central (11–15°N); 
and C, southern (<11°N). Importance values are estimates of 
the fraction of morphometric variance between the sexes at-
tributable to a particular character. The sign above each bar 
indicates direction of the size differential for each character; a 
plus ( + ) indicates that males are larger than females, and a 
minus ( — ) indicates that females are larger than males. See 
text for abbreviations of characters. 
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ments, in addition to changes in insulation and mecha-
nisms of vascular control, largely preclude an adaptive 
role for body size. However, as stated by Mayr (1963: 
321), “Multiple solutions for biological needs are the 
general rule in evolution. Selective advantages are in-
dependent and strictly additive. The fact that a thicker 
fur or denser plumage reduces heat loss does not elimi-
nate completely the selective advantage of an improved 
body surface/volume ratio.” The same logic applies to 
physiological explanations of Bergmann’s Rule that are 
based on the scaling relationship between body mass 
and total metabolic rate. 

Causal explanations for the underlying basis of 
Bergmann’s Rule have traditionally invoked the adap-
tive significance of body size in connection with tem-
perature regulation or conservation of metabolic wa-
ter (Hamilton, 1961; Mayr, 1963; Brown & Lee, 1969; 
Power, 1969; James, 1970). An alternative hypothesis is 
that geographic patterns of size variation primarily re-
flect selection for fasting endurance during episodic pe-
riods of food scarcity in seasonal environments (Boyce, 
1979; Lindstedt & Boyce, 1985; Millar & Hickling, 1990). 
In contrast to explanations based on surface/volume ra-
tios, the fasting endurance hypothesis is based on a re-
lationship between starvation time and body mass that 
is derived from total units, and therefore can be inter-
preted with respect to both total and mass-specific rates 
of metabolism (McNab, 1999). This hypothesis has re-
ceived correlative support from studies of intraspecific 
variation in temperate zone rodents (Boyce, 1978; Owen, 
1989), marsupials (Quin et al., 1996), and passerine birds 
(Murphy, 1985). The fasting-endurance hypothesis de-
serves serious attention in nonmigratory tropical frugi-
vores and nectarivores that rely on the sequential over-
lap of fruiting and flowering peaks in different plant 
species throughout the annual cycle. The latitudinal 
cline in body size of C. sphinx  is consistent with each of 
the major adaptive hypotheses, due to parallel variation 
in multiple climatic factors across peninsular India. The 
increase in body size of C. sphinx  parallels a latitudinal 
gradient of increasing minimum daily temperature, de-
creasing relative humidity, and increasing seasonality of 
temperature and precipitation. Each of the relevant cli-
matic factors covary to such an extent that their inde-
pendent effects cannot be readily discerned. A broader 
geographic scale of sampling may be required to elu-
cidate the causal basis of clinal variation. Furthermore, 
calculating an index of seasonality that is biologically 
relevant to tropical frugivores would require informa-
tion on the phenology of key food plants on a macro-
geographic scale. 

With regard to the multiple regression analysis, 
the explanatory power of the complete set of ecogeo-
graphic variables was comparable to that observed in 

previous studies of geographic variation in continental 
populations of vespertilionid bats (Burnett, 1983; Bog-
danowicz, 1990). In North America, Eptesicus fuscus ex-
hibits a progressive increase in size across a gradient 
of decreasing ambient temperature, in agreement with 
the classical form of Bergmann’s Rule. In contrast to 
the pattern observed in Indian populations of C. sphinx, 
wing size of E. fuscus exhibited a proportional decrease 
across a gradient of increasing aridity. However, in-
terpretation of this trend was complicated by the fact 
that patterns of variation in craniometric and exter-
nal characters were not entirely concordant (Burnett, 
1983). In the absence of data on body mass, it is not 
clear whether craniometric characters provide a mean-
ingful index of overall structural size. Also consistent 
with Bergmann’s Rule, Eurasian populations of Myo-
tis daubentoni exhibit a progressive increase in size (as 
indexed by craniometric and dental characters) across 
a gradient of decreasing temperature and increasing 
precipitation. Negative correlations between ambient 
temperature and size (or positive correlations between 
latitude and size) have been reported for several mi-
crochiropteran bat species (Findley & Jones, 1967; Steb-
bings, 1973; Bogan, 1975; Owen et al., 1984; Tidemann, 
1986; Hand & York, 1990), though exceptions exist 
(Strelkov, 1972). Still other species exhibit complex pat-
terns of geographic variation that defy a clear explana-
tion in terms of climatic adaptation (Findley & Traut, 
1970; Nagorsen & Tamsitt, 1981; McLellan, 1984; Kitch-
ener & Caputi, 1985). In the Lesser Sunda Islands of 
the Malay Archipelago, Cynopterus nusatenggara (Ptero-
podidae) and Hipposideros diadema (Hipposideridae) 
exhibit longitudinal clines of increasing size across a 
west-to-east gradient of increasing aridity and climatic 
severity (Kitchener et al., 1992; Kitchener & Mahara-
datunkamsi, 1996). These same patterns of geographic 
size variation are paralleled by a number of co-distrib-
uted Indo-Australian mammals (Kitchener & Suyanto, 
1996), which strongly suggests a common evolution-
ary response to a shared set of spatially varying eco-
geographic factors. The generality of clinal variation in 
body size of Indian mammals and birds remains to be 
investigated, although information compiled by Ali & 
Ripley (1980) indicates that many nonmigratory birds 
of the Indian plains (including pigeons, parakeets, tro-
gons, mynas, and bulbuls) exhibit a south-to-north 
trend of increasing size. The remarkably steep cline in 
body size of Cynopterus sphinx  suggests that variation 
of equal or greater magnitude can be expected in other 
small-bodied homeotherms that are distributed across 
the same climatic gradients. 

Geographic variation in body size may also reflect 
the influence of character displacement in areas of range 
overlap between ecologically similar species that com-
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pete for the same food resources (Grant, 1965; Brown, 
1975; Heaney, 1978). Of the four other species of frugiv-
orous bats that occur in peninsular India, only Rouset-
tus leschenaulti and Pteropus giganteus could reasonably 
be expected to represent close competitors of C. sphinx, 
and both species have equally cosmopolitan distribu-
tions (Bates & Harrison, 1997). Cynopterus brachyotis 
(a smaller-bodied congener) and Latidens salimalii are 
largely restricted to tropical evergreen forest habitat in 
higher elevations of the Western Ghats (Storz et al., un-
published data; J. Koilraj, pers. comm.). More refined in-
formation on the ecological distribution, relative abun-
dance, and degree of dietary overlap among avian and 
mammalian frugivores (Ganesh & Davidar, 1999) are 
needed to assess whether competitive interactions have 
any significant role in determining body size variation 
of C. sphinx  in peninsular India. 

Geographic Variation in Sexual Dimorphism 

Although patterns of size variation were highly concor-
dant between the sexes, C. sphinx  also exhibited a lati-
tudinal cline in the magnitude and direction of sexual 
size dimorphism. Geographic variation in sexual di-
morphism has been documented in several mammalian 
taxa, including pocket gophers (genus Thomomys; Patton 
& Smith, 1992), North American weasels (genus Mus-
tela; Ralls & Harvey, 1985), and Australian sugar gliders 
(genus Petaurus; Quin et al., 1996). With regard to causal 
explanations for the pattern of sexual dimorphism in C. 
sphinx, Myers’ (1978) hypothesis makes clear predictions 
about the nature of morphological differences between 
the sexes. Specifically, selection on females for reduced 
wing-loading should result in females having propor-
tionally greater wing area relative to males. The hypoth-
esis of Williams & Findley (1979) provides an equally 
clear prediction about variation in sexual dimorphism 
in response to climatic variation; selection on females 
for enhanced thermal inertia should result in a greater 
degree of female-biased size dimorphism in colder en-
vironments. The pattern of sexual dimorphism in C. 
sphinx  appears to support Myers’ (1978) wing-loading 
hypothesis. In the southernmost localities, where the de-
gree of female-biased size dimorphism was most pro-
nounced, characters that exhibited the greatest size dif-
ferential were skeletal elements of the hand-wing. It is 
unclear, however, why the female-biased size differen-
tial is negatively correlated with overall body size. The 
pattern of geographic variation in sexual dimorphism 
of C. sphinx  is in direct contrast to the prediction of the 
Williams & Findley (1979) hypothesis. If the adaptive 
value of increased female size is related to thermal ho-
meostasis during pregnancy, the degree of female- bi-
ased dimorphism should be inversely correlated with 

mean minimum daily temperature. The opposite pattern 
was observed, as males were larger than females in the 
northernmost localities where minimum temperatures 
are lowest (18.2–19.2°C). The hypothesis of Williams 
& Findley (1979) was originally formulated in terms of 
the relationship between body size and the energetics of 
temperature regulation in vespertilionid bats. Perhaps 
this hypothesis is not generally applicable to pteropodid 
bats in tropical environments. 

The increase in relative size of males in the northern-
most localities may also reflect the pressure of sexual se-
lection. Available evidence suggests that the degree of 
polygyny may be subject to a considerable degree of 
geographic variation in C. sphinx . Information on the 
mode of social organization and mating system is avail-
able for Pune (northern locality; Storz et al., 2000b) and 
Palayamkottai (southern locality; Storz et al., 2000a). 
In both localities, the clustering of breeding females in 
confined roosting spaces facilitates a male mating strat-
egy of resource defense polygyny (Storz et al., 2000a,b). 
Comparative census data revealed striking differences 
between the two sites with regard to patterns of female 
dispersion during the postpartum estrus period. Com-
pared to Palayamkottai, the mean number of breeding 
females per roost in Pune was 16.4-fold greater, the pro-
portion of available roosts defended by territorial males 
was 5.8-fold greater, the overall level of female aggre-
gation (as indicated by the variance/mean ratio of ha-
rem size) was 4.7-fold greater, and the average harem 
sex ratio was 4.2-fold greater. Interpreting the harem 
sex ratio as an empirical measure of the potential for po-
lygyny, the expected variance in male mating success 
(and concomitant opportunity for sexual selection) ap-
pears to be much higher in Pune than in Palayamkot-
tai. Information on the mating system of C. sphinx  from 
a greater number of localities and habitat types will be 
required to determine whether the degree of polygyny 
does in fact covary with the magnitude of male-biased 
size dimorphism. 
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