301 research outputs found

    Twins Bed Rest Project: LBNP/Exercise Minimizes Changes in Lean Leg Mass, Strength and Endurance

    Get PDF
    Decreases in muscle strength and endurance frequently are observed in non-weightbearing conditions such as bed rest (BR), spaceflight or limb immobilization. Purpose: Ow purpose was to determine if supine treadmill exercise against simulated gravity, by application of lower body negative pressure (LBNP), prevents loss of lean leg mass, strength and endurance during 30 d of 6deg head-down bed rest (BR). Methods: Fifteen pairs of monozygous twins (8 male, 7 female pairs; 26+/-4 yrs; 170+/-12 cm; 62.6+/-11.3 kg; mean+/-SD) were subjects in the present study. One sibling of each pair of twins was randomly assigned to either an exercise (EX) or non-exercise (CON) group. The EX twin walked/jogged on a vertical treadmill within LBNP chamber 6 d/wk using a 40-min interval exercise protocol at 40-80% of pre-BR VO(sub 2peak). LBNP was adjusted individually for each subject such that footward force was between 1.0 and 1.2 times body weight (-53+/-5 mmHg LBNP). The CON twin performed no exercise during BR. Subjects performed isokinetic knee (60 and 120deg/s) and ankle (60deg/s) testing to assess strength and endurance (End) before and after BR. They also had their lean leg mass (L(sub mass)) evaluated by DEXA before and after BR. Results: Changes in peak torque (T(sub pk)) were smaller for flexion (flex) than for extension (ext) after BR and did not differ between groups. The CON group had larger decreases (P<0.05) in L(sub mass), knee and ankle ext T(sub pk), and knee ext End

    Validation of a Cephalad Fluid Shift Countermeasure

    Get PDF
    INTRODUCTION: This project will provide critical data required to objectively determine how an optimized thigh cuff could be incorporated into the NASA integrated physiological countermeasure suite. This project will determine if thigh cuffs used during simulated spaceflight impact intracranial pressure (ICP), ocular structure and function, and intraocular pressure (IOP) using state of-the-art techniques. Additionally, some of the same methods, hardware, and protocols will be employed in the present investigation to enable direct comparisons to the International Space Station (ISS) "Fluid Shifts" experiment with Chibis-Lower Body Negative Pressure (LBNP). This study will determine the temporal physiological responses of thigh cuff application and removal on ocular and cerebral variables (including invasive ICP) in a microgravity analog. Furthermore, this proposed study will determine tissue pressure distribution applied by thigh cuffs in order to improve comfort, mobility, and efficacy of the countermeasure. Our specific aim is to determine the efficacy of a novel thigh cuff device to mitigate cephalad fluid shifts. We hypothesize that a thigh cuff countermeasure employed in a microgravity analog will temporarily reverse or attenuate ocular and cerebral-volume-pressure variables, approaching normal Earth-based seated posture, the most frequent posture assumed in daily life. In addition, we hypothesize that the magnitude of fluid and pressure redistribution using a thigh cuff countermeasure may require a longer exposure time than that of Chibis-LBNP (using ground-based data from our "Fluid Shifts" project). This project directly addresses Critical Path Roadmap Risks and Questions regarding "Risk of Spaceflight-Induced Intracranial Hypertension/Vision Alterations," and IRP Gap VIIP13: We need to identify preventative and treatment countermeasures to mitigate changes in ocular structure and function and intracranial pressure during spaceflight. METHODS: Noninvasive measures and tissue pressure distributions beneath thigh cuffs The objectives of this study are to: 1) determine the distribution of skin surface pressures beneath the advanced thigh cuff in ten subjects, 2) calibrate the built-in pressure measurement system of the advanced thigh cuff using an industry standard device, and 3) collect subjective feedback and data on the new cuff design to allow for further adjustments prior to invasive studies. A Tekscan Industrial Sensing (I-Scan) system will measure the pressure distribution of the advanced thigh cuff against the skin. In addition, we will measure blood pooling in the thigh and record the circumference of the thigh using Hokanson strain gauge plethysmography. The advanced thigh cuff will be adjusted to obtain a skin contact pressure of 30-50 mmHg as visualized on the Tekscan system. The built-in advanced thigh cuff pressure monitor will be recorded simultaneously to allow direct comparison to the Tekscan measurements. The volunteer will then remove the thigh cuff and remain at rest for five minutes with no legging applied. The thigh cuff will be donned again and pressure measurements will be taken in the same manner for up to 10 repetitions to show reproducibility of pressure after donning. At the conclusion of the study, subjects will be asked to flex their knee, stand, walk, and sit with the thigh cuff activated. During each of these maneuvers the subject will rate their pain/comfort using a modified Borg scale. Effect of thigh cuffs on ICP during simulated microgravity Ommaya reservoir patients will be recruited from the John Wayne Cancer Institute. Ommaya reservoirs provide safe and direct access for the measurement of ICP. Subjects will be instrumented for continuous blood pressure, ECG, and invasive ICP measures. The subjects will be positioned in the upright sitting posture for a 10-minute stabilization period. After the 10-minute stabilization period, imaging measures [ICP, Optical Coherence Tomography, IOP, ocular and vascular ultrasound] will be performed. Following baseline seated measures, the subject will be positioned randomly in the supine, 15deg head-down-tilt, and 15deg head-down-tilt with thigh cuffs and measures repeated. DISCUSSION: Tests to down-select thigh cuff designs will occur in early 2016. Invasive ICP and noninvasive eye imaging tests will begin in spring 2016. Supported by NSBRI through NCC 9-58

    Pharmacologic Atrial Natriuretic Peptide Reduces Human Leg Capillary Filtration

    Get PDF
    Atrial natriuretic peptide (ANP) is produced and secreted by atrial cells. We measured calf capillary filtration rate with prolonged venous-occlusion plethys-mography of supine health male subjects during pharmacologic infusion of ANP (48 pmol/kg/min for 15 min; n equals 6) and during placebo infusion (n equals 7). Results during infusions were compared to prior control measurements. ANP infusion increased plasma (ANP) from 30 plus or minus 4 to 2,568 plus or minus 595 pmol/L. Systemic hemoconcentration occurred during ANP infusion; mean hematocrit and plasma colloid osmotic pressure increased 4.6 and 11.3 percent respectively, relative to pre-infusion baseline values (p is less than 0.05). Mean calf filtration, however was significantly reduced from 0.15 to 0.08 ml/100 ml/min with ANP. Heart rate increased 20 percent with ANP infusion, wheras blood pressure was unchanged. Calf conductance (blood flow/arterial pressure) and venous compliance were unaffected by ANP infusion. Placebo infusion had no effect relative to prior baseline control measurements. Although ANP induced systemic capillary filtration, in the calf, filtration was reduced with ANP. Therefore, phamacologic ANP infusion enhances capillary filtration from the systemic circulation, perhaps at upper body or splanchic sites or both, while having the opposite effect in the leg

    WISE 2005: LBNP Exercise and Flywheel Resistive Exercise as an Effective Countermeasure Combination

    Get PDF
    Long-term exposure to microgravity can cause a severe musculoskeletal loss and cardiovascular deconditioning in astronauts. In this report, the effectiveness of combined supine treadmill exercise in a lower body negative pressure chamber (LBNPex) and flywheel resistive exercise (Rex) countermeasures was determined to prevent bone loss, reduced aerobic upright exercise capacity and reduced muscle strength. We hypothesized that exercise subjects (EX) would show less decrease in bone mineral density (BMD), peak oxygen consumption (VO2pk) and knee extensor strength (KES) than control subjects (CON). Sixteen healthy female subjects (34 plus or minus 4yrs, 164 plus or minus 6.5cm, 58 plus or minus 5kg; mean plus or minus SD) participated in a 60-d 6 degree head-down tilt bed rest (BR) study after providing written informed consent. Subjects were assigned to one of two groups: a non- exercising CON group or an EX group performing LBNPex 2-4 d/wk and Rex every 3rd-d. VO2pk was measured with a maximal, graded, upright treadmill test performed pre-BR and on 3-d after BR. BMD was assessed pre-BR and 3-d after BR by dual energy x-ray absorptiometry total body DEXA scan (DEXA; HOLOGIC QDR 4500 Elite ). A Cybex dynamometer was employed to measure the isokinetic KES before and 5-d after BR. Two-way repeated measures ANOVA were performed with time as the repeated factor. Statistical significance was set at p less than 0.05. CON experienced a significant decrease in BMD in the trochanter (PRE: 0.670 0.045; POST: 0.646 0.352 g(raised dot) per square centimeter) and in the whole hip (PRE: 0.894 0.059; POST: 0.858 0.057 g(raised dot) per square centimeter). BMD also decreased significantly in EX in the trochanter (PRE: 0.753 plus or minus 0.0617; POST: 0.741 plus or minus 0.061 g(raised dot) per square centimeter) and whole hip (PRE: 0.954 plus or minus 0.067; POST: 0.935 plus or minus 0.069 g(raised dot) per square centimeter). BMD losses were significantly less in EX than in CON subjects. VO2pk was significantly decreased in the CON after BR (PRE: 38.0 plus or minus 4.8; POST: 29.9 plus or minus 4.2 ml(raised dot) per kilogram per minute), but not in the EX (PRE: 39.0 plus or minus 2.0; POST: 37.8 plus or minus 1.9 ml(raised dot) per kilogram per minute). KES was significantly reduced by 30% in CON (PRE: 113 plus or minus 12; POST: 78 plus or minus 8 N-m), but was not different in EX (PRE: 126 plus or minus 25; POST: 115 plus or minus 25 N-m). The combination LBNPex and Rex during 60-d BR protects against cardiovascular and musculoskeletal deconditioning and may be an efficacious countermeasure for prolonged space flight

    Supine Lower Body Negative Pressure Exercise Maintains Upright Exercise Capacity in Male Twins during 30 Days of Bed Rest

    Get PDF
    Exercise capacity is reduced following both short and long duration exposures to microgravity. We have shown previously that supine lower body negative pressure with exercise (LBNP(sub ex) maintains upright exercise capacity in men after 5d and 15d bed rest, as a simulation of microgravity. We hypothesized that LBNP(sub ex) would protect upright exercise capacity (VO2pk) and sprint performance in eight sets of identical male twins during a 30-d bed rest. Twins within each set were randomly assigned to either a control group (CON) who performed no exercise or to an exercise group (EX) who performed a 40-min interval (40-80% pre-BR VO2pk) LBNP(sub ex) (55+/-4 mmHg) exercise protocol, plus 5 min of resting LBNP, 6 d/wk. LBNP produced footward force equivalent to 1.0- 1.2 times body weight. Pre- and post-bed rest, subjects completed an upright graded exercise test to volitional fatigue and sprint test of 30.5 m. After bed rest, VO2pk was maintained in the EX subjects (-3+/-3%), but was significantly decreased in the CON subjects (-24+/-4%). Sprint time also was increased in the CON subjects (24+/-8%), but maintained in the EX group (8+/-2%). The performance of a supine, interval exercise protocol with LBNP maintains upright exercise capacity and sprint performance during 30 d of bed rest. This exercise countermeasure protocol may help prevent microgravity-induced deconditioning during long duration space flight

    Submacular Choroid Thickness Increases During Long-Duration Spaceflight

    Get PDF
    The Spaceflight Associated Neuro-ocular Syndrome (SANS) is characterized by the development of optic disc edema, choroidal folds, cotton-wool spots, globe flattening, and/or refractive error changes greater than or equal to 0.75D during long-duration spaceflight to the International Space Station (ISS). It is hypothesized that these findings result from the headward fluid shift that occurs due to weightlessness. We can induce a headward fluid shift on Earth using positional changes and on ISS due to weightlessness. Lower-body negative pressure (LBNP) is used to reverse the headward fluid shift by drawing fluid into the lower body and can be used on Earth and on ISS

    EXERCISE WITHIN LOWER BODY NEGATIVE PRESSURE AS AN ARTIFICIAL GRAVITY COUNTERMEASURE

    Get PDF
    Current exercise systems for space, which attempt to maintain performance, are unable to generate cardiovascular and musculoskeletal loads similar to those on Earth [1, 2]. The purpose of our research is to evaluate the use of lower body negative pressure (LBNP) treadmill exercise to prevent deconditioning during simulated microgravity

    Changes in the Optic Nerve Head and Choroid Over 1 Year of Spaceflight

    Get PDF
    Importance: While 6-month data are available regarding spaceflight-associated neuro-ocular syndrome, manned missions for 1 year and beyond are planned, warranting evaluation for spaceflight-associated neuro-ocular syndrome beyond 6 months. Objective: To determine if the manifestation of spaceflight-associated neuro-ocular syndrome worsens during International Space Station missions exceeding the present 4- to 6-month duration. Design, Setting, and Participants: The One-Year Mission Study used quantitative imaging modalities to investigate changes in ocular structure in 2 crew members who completed a 1-year-long spaceflight mission. This study investigated the ocular structure of crew members before, during, and after their mission on the International Space Station. Two crew members participated in this study from March 2015 to September 2016. Analysis began in March 2015 and ended in May 2020. Exposures: Crew members were tested before, during, and up to 1 year after spaceflight. Main Outcomes and Measures: This study compares ocular changes (peripapillary retinal edema, axial length, anterior chamber depth, and refraction) in two 1-year spaceflight mission crew members with cohort crew members from a 6-month mission (n = 11). Minimum rim width (the shortest distance between Bruch membrane opening and the internal limiting membrane) and peripapillary total retinal thickness were measured using optical coherence tomography. Results: Both crew members were men. Minimum rim width and total retinal thickness increased in both participants throughout the duration of spaceflight exposure to the maximal observed change from preflight (minimum rim width: participant 1, 561 [+149 from preflight] μm at flight day 270; participant 2, 539 [+56 from preflight] μm at flight day 270; total retinal thickness: participant 1, 547 [+135 from preflight] μm at flight day 90; participant 2, 528 [+45 from preflight] μm at flight day 210). Changes in peripapillary choroid engorgement, axial length, and anterior chamber depth appeared similar between the 1-year mission participants and a 6-month mission cohort. Conclusions and Relevance: This report documents the late development of mild optic disc edema in 1 crew member and the progressive development of choroidal folds and optic disc edema in another crew member over the duration of 1 year in low Earth orbit aboard the International Space Station. Previous reports characterized the ocular risk associated with 4 to 6 months of spaceflight. As future spaceflight missions are planned to increase in duration and extend beyond low Earth orbit, further observation of astronaut ocular health on spaceflight missions longer than 6 months in duration may be warranted

    Body composition and body fat distribution are related to cardiac autonomic control in non-alcoholic fatty liver disease patients

    Get PDF
    BACKGROUND/OBJECTIVES: Heart rate recovery (HRR), a cardiac autonomic control marker, was shown to be related to body composition (BC), yet this was not tested in non-alcoholic fatty liver disease (NAFLD) patients. The aim of this study was to determine if, and to what extent, markers of BC and body fat (BF) distribution are related to cardiac autonomic control in NAFLD patients. SUBJECTS/METHODS: BC was assessed with dual-energy X-ray absorptiometry in 28 NAFLD patients (19 men, 51±13 years, and 9 women, 47±13 years). BF depots ratios were calculated to assess BF distribution. Subjects’ HRR was recorded 1 (HRR1) and 2 min (HRR2) immediately after a maximum graded exercise test. RESULTS: BC and BF distribution were related to HRR; particularly weight, trunk BF and trunk BF-to-appendicular BF ratio showed a negative relation with HRR1 (r 1⁄4 0.613, r 1⁄4 0.597 and r 1⁄4 0.547, respectively, Po0.01) and HRR2 (r 1⁄4 0.484, r 1⁄4 0.446, Po0.05, and r 1⁄4 0.590, Po0.01, respectively). Age seems to be related to both HRR1 and HRR2 except when controlled for BF distribution. The preferred model in multiple regression should include trunk BF-to-appendicular BF ratio and BF to predict HRR1 (r2 1⁄4 0.549; Po0.05), and trunk BF-to-appendicular BF ratio alone to predict HRR2 (r2 1⁄4 0.430; Po0.001). CONCLUSIONS: BC and BF distribution were related to HRR in NAFLD patients. Trunk BF-to-appendicular BF ratio was the best independent predictor of HRR and therefore may be best related to cardiovascular increased risk, and possibly act as a mediator in age-related cardiac autonomic control variation.info:eu-repo/semantics/publishedVersio
    corecore