10 research outputs found

    Selenium Levels in Serum, Red Blood Cells, and Cerebrospinal Fluid of Alzheimer's Disease Patients: A Report from the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL)

    Full text link
    © 2017 - IOS Press and the authors. All rights reserved. Selenium (Se) protects cells against oxidative stress damage through a range of bioactive selenoproteins. Increased oxidative stress is a prominent feature of Alzheimer's disease (AD), and previous studies have shown that Se deficiency is associated with age-related cognitive decline. In this study, we assessed Se status in different biofluids from a subgroup of participants in the Australian Imaging, Biomarkers and Lifestyle Flagship Study of Ageing. As Se in humans can either be an active component of selenoproteins or inactive via non-specific incorporation into other proteins, we used both size exclusion chromatography-inductively coupled plasma-mass spectrometry (SEC-ICP-MS) and tandem mass spectrometry to characterize selenoproteins in serum. We observed no differences in total Se concentration in serum or cerebrospinal fluid of AD subjects compared to mildly cognitively impairment patients and healthy controls. However, Se levels in erythrocytes were decreased in AD compared to controls. SEC-ICP-MS analysis revealed a dominant Se-containing fraction. This fraction was subjected to standard protein purification and a bottom-up proteomics approach to confirm that the abundant Se in the fraction was due, in part, to selenoprotein P. The lack of change in the Se level is at odds with our previous observations in a Brazilian population deficient in Se, and we attribute this to the Australian cohort being Se-replete

    \u3ci\u3eDrosophila\u3c/i\u3e Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution

    Get PDF
    The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu

    Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron

    No full text

    Tevatron Combination of Single-Top-Quark Cross Sections and Determination of the Magnitude of the Cabibbo-Kobayashi-Maskawa Matrix Element Vtb\bf V_{tb}

    No full text
    We present the final combination of CDF and D0 measurements of cross sections for single-top-quark production in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV. The data correspond to total integrated luminosities of up to 9.7 fb1^{−1} per experiment. The t-channel cross section is measured to be σt_t=2.250.31+0.29_{-0.31}^{+0.29} pb. We also present the combinations of the two-dimensional measurements of the s- vs t-channel cross section. In addition, we give the combination of the s+t channel cross section measurement resulting in σs+t_{s+t}=3.300.40+0.52_{-0.40}^{+0.52} pb, without assuming the standard model value for the ratio σs_st_t. The resulting value of the magnitude of the top-to-bottom quark coupling is |Vtb_{tb}|=1.020.05+0.06_{-0.05}^{+0.06}, corresponding to |Vtb_{tb}|>0.92 at the 95% C.L

    Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron

    No full text

    Tevatron Run II combination of the effective leptonic electroweak mixing angle

    No full text
    International audienceDrell-Yan lepton pairs produced in the process pp¯→ℓ+ℓ-+X through an intermediate γ*/Z boson have an asymmetry in their angular distribution related to the spontaneous symmetry breaking of the electroweak force and the associated mixing of its neutral gauge bosons. The CDF and D0 experiments have measured the effective-leptonic electroweak mixing parameter sin2θefflept using electron and muon pairs selected from the full Tevatron proton-antiproton data sets collected in 2001-2011, corresponding to 9–10  fb-1 of integrated luminosity. The combination of these measurements yields the most precise result from hadron colliders, sin2θefflept=0.23148±0.00033. This result is consistent with, and approaches in precision, the best measurements from electron-positron colliders. The standard model inference of the on-shell electroweak mixing parameter sin2θW, or equivalently the W-boson mass MW, using the zfitter software package yields sin2θW=0.22324±0.00033 or equivalently, MW=80.367±0.017  GeV/c2

    Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron

    No full text
    International audienceThe CDF and D0 experiments at the Fermilab Tevatron have measured the asymmetry between yields of forward- and backward-produced top and antitop quarks based on their rapidity difference and the asymmetry between their decay leptons. These measurements use the full data sets collected in proton-antiproton collisions at a center-of-mass energy of s=1.96  TeV. We report the results of combinations of the inclusive asymmetries and their differential dependencies on relevant kinematic quantities. The combined inclusive asymmetry is AFBtt¯=0.128±0.025. The combined inclusive and differential asymmetries are consistent with recent standard model predictions

    Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron

    No full text

    Tevatron Run II combination of the effective leptonic electroweak mixing angle

    No full text
    corecore