15,917 research outputs found

    Omnidirectional joint Patent

    Get PDF
    Cord restraint system for pressure suit joint

    The devil in the deep: Expanding the known habitat of a rare and protected fish

    Get PDF
    The accepted geographic range of a species is related to both opportunity and effort in sampling that range. In deepwater ecosystems where human access is limited, the geographic ranges of many marine species are likely to be underestimated. A chance recording from baited cameras deployed on deep uncharted reef revealed an eastern blue devil fish (Paraplesiops bleekeri) at a depth of 51 m and more than 2 km further down the continental shelf slope than previously observed. This is the first verifiable observation of eastern blue devil fish, a protected and endemic southeastern Australian temperate reef species, at depths greater than the typically accepted depth range of 30 m. Knowledge on the ecology of this and many other reef species is indeed often limited to shallow coastal reefs, which are easily accessible by divers and researchers. Suitable habitat for many reef species appears to exist on deeper offshore reefs but is likely being overlooked due to the logistics of conducting research on these often uncharted habitats. On the basis of our observation at a depth of 51 m and observations by recreational fishers catching eastern blue devil fishes on deep offshore reefs, we suggest that the current depth range of eastern blue devil fish is being underestimated at 30 m. We also observed several common reef species well outside of their accepted depth range. Notably, immaculate damsel (Mecaenichthys immaculatus), red morwong (Cheilodactylus fuscus), mado (Atypichthys strigatus), white-ear (Parma microlepis) and silver sweep (Scorpis lineolata) were abundant and recorded in a number of locations at up to a depth of at least 55 m. This underestimation of depth potentially represents a large area of deep offshore reefs and micro habitats out on the continental shelf that could contribute to the resilience of eastern blue devil fish to extinction risk and contribute to the resilience of many reef species to climate change

    Nonlocal Effects of Partial Measurements and Quantum Erasure

    Get PDF
    Partial measurement turns the initial superposition not into a definite outcome but into a greater probability for it. The probability can approach 100%, yet the measurement can undergo complete quantum erasure. In the EPR setting, we prove that i) every partial measurement nonlocally creates the same partial change in the distant particle; and ii) every erasure inflicts the same erasure on the distant particle's state. This enables an EPR experiment where the nonlocal effect does not vanish after a single measurement but keeps "traveling" back and forth between particles. We study an experiment in which two distant particles are subjected to interferometry with a partial "which path" measurement. Such a measurement causes a variable amount of correlation between the particles. A new inequality is formulated for same-angle polarizations, extending Bell's inequality for different angles. The resulting nonlocality proof is highly visualizable, as it rests entirely on the interference effect. Partial measurement also gives rise to a new form of entanglement, where the particles manifest correlations of multiple polarization directions. Another novelty in that the measurement to be erased is fully observable, in contrast to prevailing erasure techniques where it can never be observed. Some profound conceptual implications of our experiment are briefly pointed out.Comment: To be published in Phys. Rev. A 63 (2001). 19 pages, 12 figures, RevTeX 3.

    MACHO Mass Determination Based on Space Telescope Observation

    Get PDF
    We investigate the possibility of lens mass determination for a caustic crossing microlensing event based on a space telescope observation. We demonstrate that the parallax due to the orbital motion of a space telescope causes a periodic fluctuation of the light curve, from which the lens distance can be derived. Since the proper motion of the lens relative to the source is also measurable for a caustic crossing event, one can find a full solution for microlensing properties of the event, including the lens mass. To determine the lens mass with sufficient accuracy, the light curve near the caustic crossing should be observed within uncertainty of ∼\sim 1%. We argue that the Hubble Space Telescope observation of the caustic crossing supplied with ground-based observations of the full light curve will enable us to determine the mass of MACHOs, which is crucial for understanding the nature of MACHOs.Comment: 9 pages + 3 figures, accepted for publication in ApJ Letter

    An improved calculation of the isospin-symmetry-breaking corrections to superallowed Fermi beta decay

    Get PDF
    We report new shell-model calculations of the isospin-symmetry-breaking correction to superallowed nuclear beta decay. The most important improvement is the inclusion of core orbitals, which are demonstrated to have a significant impact on the mismatch in the radial wave functions of the parent and daughter states. We determine which core orbitals are important to include from an examination of measured spectroscopic factors in single-nucleon pick-up reactions. We also examine the new radiative-correction calculation by Marciano and Sirlin and, by a simple reorganization, show that it is possible to preserve the conventional separation into a nucleus-independent inner radiative term and a nucleus-dependent outer term. We tabulate new values for the three theoretical corrections for twenty superallowed transitions, including the thirteen well-studied cases. With these new correction terms the corrected Ft values for the thirteen cases are statistically consistent with one another and the anomalousness of the 46V result disappears. These new calculations lead to a lower average Ft value and a higher value of Vud. The sum of squares of the top-row elements of the CKM matrix now agrees exactly with unitarity.Comment: 15 pages, 2 postscript figures, revtex

    Flight evaluation of the STOL flare and landing during night operations

    Get PDF
    Simulated instrument approaches were made to Category 1 minimums followed by a visual landing on a 100 x 1700 ft STOL runway. Data were obtained for variations in the aircraft's flare response characteristics and control techniques and for different combinations of aircraft and runway lighting and a visual approach slope indication. With the complete aircraft and runway lighting and visual guidance no degradation in flying qualities or landing performance was observed compared to daylight operations. elimination of the touchdown zone floodlights or the aircraft landing lights led to somewhat greater pilot workload; however, the landing could still be accomplished successfully. Loss of both touchdown zone and aircraft landing lights led to a high workload situation and only a marginally adequate to inadequate landing capability
    • …
    corecore