305 research outputs found
The Casimir Effect for Parallel Plates Revisited
The Casimir effect for a massless scalar field with Dirichlet and periodic
boundary conditions (b.c.) on infinite parallel plates is revisited in the
local quantum field theory (lqft) framework introduced by B.Kay. The model
displays a number of more realistic features than the ones he treated. In
addition to local observables, as the energy density, we propose to consider
intensive variables, such as the energy per unit area , as
fundamental observables. Adopting this view, lqft rejects Dirichlet (the same
result may be proved for Neumann or mixed) b.c., and accepts periodic b.c.: in
the former case diverges, in the latter it is finite, as is shown by
an expression for the local energy density obtained from lqft through the use
of the Poisson summation formula. Another way to see this uses methods from the
Euler summation formula: in the proof of regularization independence of the
energy per unit area, a regularization-dependent surface term arises upon use
of Dirichlet b.c. but not periodic b.c.. For the conformally invariant scalar
quantum field, this surface term is absent, due to the condition of zero trace
of the energy momentum tensor, as remarked by B.De Witt. The latter property
does not hold in tha application to the dark energy problem in Cosmology, in
which we argue that periodic b.c. might play a distinguished role.Comment: 25 pages, no figures, late
Magnetic-force-microscope study of interlayer "kinks" in individual vortices in underdoped cuprate YBaCuO superconductor
We use magnetic force microscopy to both image and manipulate individual
vortex lines threading single crystalline YBaCuO, a layered
superconductor. We find that when we pull the top of a pinned vortex, it may
not tilt smoothly. Sometimes, we observe a vortex to break into discrete
segments that can be described as short stacks of pancake vortices, similar to
the "kinked" structure proposed by Benkraouda and Clem. Quantitative analysis
gives an estimate of the pinning force and the coupling between the stacks. Our
measurements highlight the discrete nature of stacks of pancake vortices in
layered superconductors
Improved hippocampal dose with reduced margin radiotherapy for glioblastoma multiforme
BACKGROUND: To dosimetrically evaluate the effect of reduced margin radiotherapy on hippocampal dose for glioblastoma multiforme (GBM) patients. METHODS: GBM patients enrolled on the Radiation Therapy Oncology Group (RTOG) 0825 trial at our institution were identified. Standard RTOG 0825 expansions were 2 cm + 3-5 mm from the gross tumor volume (GTV) to the clinical tumor volume (CTV) and from the CTV to the planning tumor volume (PTV), respectively. These same patients also had reduced margin tumor volumes generated with 8 mm (GTV to CTV) + 3 mm (CTV to PTV) expansions. Individual plans were created for both standard and reduced margin structures. The dose-volume histograms were statistically compared with a paired, two-tailed Student’s t-test with a significance level of p < 0.05. RESULTS: A total of 16 patients were enrolled on RTOG 0825. The reduced margins resulted in statistically significant reductions in hippocampal dose at all evaluated endpoints. The hippocampal D(max) was reduced from a mean of 61.4 Gy to 56.1 Gy (8.7%), D(40%) was reduced from 49.9 Gy to 36.5 Gy (26.9%), D(60%) was reduced from 32.7 Gy to 18.7 Gy (42.9%) and the D(80%) was reduced from 27.3 Gy to 15.3 Gy (44%). CONCLUSIONS: The use of reduced margin PTV expansions in the treatment of GBM patients results in significant reductions in hippocampal dose. Though the exact clinical benefit of this reduction is currently unclear, this study does provide support for a future prospective trial evaluating the neurocognitive benefits of reduced margin tumor volumes in the treatment of GBM patients
Searching for the signature of a pair density wave in YBaCuO using high energy X-ray diffraction
We have carried out a search for a pair density wave signature using
high-energy X-ray diffraction in fields up to 16 T. We do not see evidence for
a signal at the predicted wavevector. This is a report on the details of our
experiment, with information on where in reciprocal space we looked.Comment: 5 pages, report on experimental result
Specific Heat of YBaCuO Single Crystals: Implications for the Vortex Structure
The anisotropy of the magnetic field dependence of the specific heat of
YBaCuO can be used to identify different
low-energy excitations, which include phonons, spin- particles,
and electronic contributions. With a magnetic field H applied perpendicular to
the copper oxide planes, we find that the specific heat includes a linear-T
term proportional to . The nonlinear field dependence of the density
of states at the Fermi level suggests that there are quasiparticle excitations
throughout the entire vortex, not just in the vortex core. The
term agrees quantitatively with G. Volovik's prediction for a superconductor
with lines of nodes in the gap. A similar, but much smaller, effect is
predicted for fields parallel to the planes, and sensitive measurements of the
in-plane anisotropic magnetic field dependence of the specific heat could be
used to map out the nodes.Comment: 14 pages (LaTeX2e) plus 6 uuencoded .eps figure
Recommended from our members
Mechanics of Individual, Isolated Vortices in a Cuprate Superconductor
Superconductors often contain quantized microscopic whirlpools of electrons, called vortices, that can be modelled as one-dimensional elastic objects1. Vortices are a diverse area of study for condensed matter because of the interplay between thermal fluctuations, vortex–vortex interactions and the interaction of the vortex core with the three-dimensional disorder landscape. Although vortex matter has been studied extensively, the static and dynamic properties of an individual vortex have not. Here, we use magnetic force microscopy (MFM) to image and manipulate individual vortices in a detwinned YBa2Cu3O6.991 single crystal, directly measuring the interaction of a moving vortex with the local disorder potential. We find an unexpected and marked enhancement of the response of a vortex to pulling when we wiggle it transversely. In addition, we find enhanced vortex pinning anisotropy that suggests clustering of oxygen vacancies in our sample and demonstrates the power of MFM to probe vortex structure and microscopic defects that cause pinning.Physic
Impact of Iron-site defects on Superconductivity in LiFeAs
PW acknowledges funding from the MPG-UBC center and financial support from EPSRC (EP/I031014/1).In conventional s-wave superconductors, only magnetic impurities exhibit impurity bound states, whereas for an s order parameter they can occur for both magnetic and non-magnetic impurities. Impurity bound states in superconductors can thus provide important insight into the order parameter. Here, we present a combined experimental and theoretical study of native and engineered iron-site defects in LiFeAs. Detailed comparison of tunneling spectra measured on impurities with spin fluctuation theory reveals a continuous evolution from negligible impurity bound state features for weaker scattering potential to clearly detectable states for somewhat stronger scattering potentials. All bound states for these intermediate strength potentials are pinned at or close to the gap edge of the smaller gap, a phenomenon that we explain and ascribe to multi-orbital physics.PostprintPeer reviewe
Discovery of a strain-stabilised smectic electronic order in LiFeAs
CT, CMY and PW acknowledge funding from EPSRC through EP/L505079/1 and EP/I031014/1. Research at UBC was supported by the Natural Sciences and Engineering Research Council of Canada, the Canadian Institute for Advanced Research, and the Stewart Blusson Quantum Matter Institute.In many high temperature superconductors, small orthorhombic distortions of the lattice structure result in surprisingly large symmetry breaking of the electronic states and macroscopic properties, an effect often referred to as nematicity. To directly study the impact of symmetry-breaking lattice distortions on the electronic states, using low-temperature scanning tunnelling microscopy we image at the atomic scale the influence of strain-tuned lattice distortions on the correlated electronic states in the iron-based superconductor LiFeAs, a material which in its ground state is tetragonal with four-fold (C4) symmetry. Our experiments uncover a new strain-stabilised modulated phase which exhibits a smectic order in LiFeAs, an electronic state which not only breaks rotational symmetry but also reduces translational symmetry. We follow the evolution of the superconducting gap from the unstrained material with C4 symmetry through the new smectic phase with two-fold (C2) symmetry and charge-density wave order to a state where superconductivity is completely suppressed.Publisher PDFPeer reviewe
- …