6,764 research outputs found

    On the order of summability of the Fourier inversion formula

    Get PDF
    In this article we show that the order of the point value, in the sense of Łojasiewicz, of a tempered distribution and the order of summability of the pointwise Fourier inversion formula are closely related. Assuming that the order of the point values and certain order of growth at infinity are given for a tempered distribution, we estimate the order of summability of the Fourier inversion formula. For Fourier series, and in other cases, it is shown that if the distribution has a distributional point value of order k, then its Fourier series is e.v. Cesàro summable to the distributional point value of order k+1. Conversely, we also show that if the pointwise Fourier inversion formula is e.v. Cesàro summable of order k, then the distribution is the (k+1)-th derivative of a locally integrable function, and the distribution has a distributional point value of order k+2. We also establish connections between orders of summability and local behavior for other Fourier inversion problems

    First experimental test of Bell inequalities performed using a non-maximally entangled state

    Get PDF
    We report on the realisation of a new test of Bell inequalities using the superposition of type I parametric down conversion produced in two different non-linear crystals pumped by the same laser, but with different polarisation. The produced state is non-maximally entangled. We discuss the advantages and the possible developments of this configuration

    On a Watson-like Uniqueness Theorem and Gevrey Expansions

    Get PDF
    We present a maximal class of analytic functions, elements of which are in one-to-one correspondence with their asymptotic expansions. In recent decades it has been realized (B. Malgrange, J. Ecalle, J.-P. Ramis, Y. Sibuya et al.), that the formal power series solutions of a wide range of systems of ordinary (even non-linear) analytic differential equations are in fact the Gevrey expansions for the regular solutions. Watson's uniqueness theorem belongs to the foundations of this new theory. This paper contains a discussion of an extension of Watson's uniqueness theorem for classes of functions which admit a Gevrey expansion in angular regions of the complex plane with opening less than or equal to (\frac \pi k,) where (k) is the order of the Gevrey expansion. We present conditions which ensure uniqueness and which suggest an extension of Watson's representation theorem. These results may be applied for solutions of certain classes of differential equations to obtain the best accuracy estimate for the deviation of a solution from a finite sum of the corresponding Gevrey expansion.Comment: 18 pages, 4 figure

    Strong coupling expansion for the Bose-Hubbard and the Jaynes-Cummings lattice model

    Full text link
    A strong coupling expansion, based on the Kato-Bloch perturbation theory, which has recently been proposed by Eckardt et al. [Phys. Rev. B 79, 195131] and Teichmann et al. [Phys. Rev. B 79, 224515] is implemented in order to study various aspects of the Bose-Hubbard and the Jaynes-Cummings lattice model. The approach, which allows to generate numerically all diagrams up to a desired order in the interaction strength is generalized for disordered systems and for the Jaynes-Cummings lattice model. Results for the Bose-Hubbard and the Jaynes-Cummings lattice model will be presented and compared with results from VCA and DMRG. Our focus will be on the Mott insulator to superfluid transition.Comment: 29 pages, 21 figure

    High Precision Measurement of the Superallowed 0^+ to 0^+ Beta Decay of ^{22}Mg

    Full text link
    The half-life, 3.8755(12) s, and superallowed branching ratio, 0.5315(12), for ^{22}Mg beta-decay have been measured with high precision. The latter depended on gamma-ray intensities being measured with an HPGe detector calibrated for relative efficiencies to an unprecedented 0.15%. Previous precise measurements of 0^+ to 0^+ transitions have been restricted to the nine that populate stable daughter nuclei. No more such cases exist, and any improvement in a critical CKM unitarity test must depend on precise measurements of more exotic nuclei. With this branching-ratio measurement, we show those to be possible for T_z = -1 parents. We obtain a corrected Ft-value of 3071(9) s, in good agreement with expectations.Comment: 4 pages, 2 figures, revtex

    Quasi-Normal Mode Expansion for Linearized Waves in Gravitational Systems

    Full text link
    The quasinormal modes (QNM's) of gravitational systems modeled by the Klein-Gordon equation with effective potentials are studied in analogy to the QNM's of optical cavities. Conditions are given for the QNM's to form a complete set, i.e., for the Green's function to be expressible as a sum over QNM's, answering a conjecture by Price and Husain [Phys. Rev. Lett. {\bf 68}, 1973 (1992)]. In the cases where the QNM sum is divergent, procedures for regularization are given. The crucial condition for completeness is the existence of spatial discontinuities in the system, e.g., the discontinuity at the stellar surface in the model of Price and Husain.Comment: 12 pages, WUGRAV-94-

    Breakdown of Lindstedt Expansion for Chaotic Maps

    Full text link
    In a previous paper of one of us [Europhys. Lett. 59 (2002), 330--336] the validity of Greene's method for determining the critical constant of the standard map (SM) was questioned on the basis of some numerical findings. Here we come back to that analysis and we provide an interpretation of the numerical results by showing that no contradiction is found with respect to Greene's method. We show that the previous results based on the expansion in Lindstedt series do correspond to the transition value but for a different map: the semi-standard map (SSM). Moreover, we study the expansion obtained from the SM and SSM by suppressing the small divisors. The first case turns out to be related to Kepler's equation after a proper transformation of variables. In both cases we give an analytical solution for the radius of convergence, that represents the singularity in the complex plane closest to the origin. Also here, the radius of convergence of the SM's analogue turns out to be lower than the one of the SSM. However, despite the absence of small denominators these two radii are lower than the ones of the true maps for golden mean winding numbers. Finally, the analyticity domain and, in particular, the critical constant for the two maps without small divisors are studied analytically and numerically. The analyticity domain appears to be an perfect circle for the SSM analogue, while it is stretched along the real axis for the SM analogue yielding a critical constant that is larger than its radius of convergence.Comment: 12 pages, 3 figure
    corecore