57 research outputs found

    Phosphosite charge rather than shootward localization determines OCTOPUS activity in root protophloem.

    Get PDF
    Polar cellular localization of proteins is often associated with their function and activity. In plants, relatively few polar-localized factors have been described. Among them, the plasma membrane-associated <i>Arabidopsis</i> proteins OCTOPUS (OPS) and BREVIS RADIX (BRX) display shootward and rootward polar localization, respectively, in developing root protophloem cells. Both <i>ops</i> and <i>brx</i> null mutants exhibit defects in protophloem differentiation. Here we show that <i>OPS</i> and <i>BRX</i> act genetically in parallel in this process, although <i>OPS</i> dosage increase mends defects caused by <i>brx</i> loss-of-function. OPS protein function is ancient and conserved in the most basal angiosperms; however, many highly conserved structural OPS features are not strictly required for OPS function. They include a BRASSINOSTEROID INSENSITIVE 2 (BIN2) interaction domain, which supposedly mediates gain-of-function effects obtained through ectopic OPS overexpression. However, engineering an increasingly positive charge in a critical phosphorylation site, S318, progressively amplifies OPS activity. Such hyperactive OPS versions can even complement the severe phenotype of <i>brx ops</i> double mutants, and the most active variants eventually trigger gain-of-function phenotypes. Finally, BRX-OPS as well as OPS-BRX fusion proteins localize to the rootward end of developing protophloem cells, but complement <i>ops</i> mutants as efficiently as shootward localized OPS. Thus, our results suggest that S318 phosphorylation status, rather than a predominantly shootward polar localization, is a primary determinant of OPS activity

    Brassinosteroid signaling directs formative cell divisions and protophloem differentiation in Arabidopsis root meristems.

    Get PDF
    Brassinosteroids (BRs) trigger an intracellular signaling cascade through its receptors BR INSENSITIVE 1 (BRI1), BRI1-LIKE 1 (BRL1) and BRL3. Recent studies suggest that BR-independent inputs related to vascular differentiation, for instance root protophloem development, modulate downstream BR signaling components. Here, we report that protophloem sieve element differentiation is indeed impaired in bri1 brl1 brl3 mutants, although this effect might not be mediated by canonical downstream BR signaling components. We also found that their small meristem size is entirely explained by reduced cell elongation, which is, however, accompanied by supernumerary formative cell divisions in the radial dimension. Thus, reduced cell expansion in conjunction with growth retardation, because of the need to accommodate supernumerary formative divisions, can account for the overall short root phenotype of BR signaling mutants. Tissue-specific re-addition of BRI1 activity partially rescued subsets of these defects through partly cell-autonomous, partly non-cell-autonomous effects. However, protophloem-specific BRI1 expression essentially rescued all major bri1 brl1 brl3 root meristem phenotypes. Our data suggest that BR perception in the protophloem is sufficient to systemically convey BR action in the root meristem context

    BIG BROTHER Uncouples Cell Proliferation from Elongation in the Arabidopsis Primary Root.

    Get PDF
    Plant organ size is sensitive to environmental conditions, but is also limited by hardwired genetic constraints. In Arabidopsis, a few organ size regulators have been identified. Among them, the BIG BROTHER (BB) gene has a prominent role in the determination of flower organ and leaf size. BB loss-of-function mutations result in a prolonged proliferation phase during leaf(-like) organ formation, and consequently larger leaves, petals and sepals. Whether BB has a similar role in root growth is unknown. Here we describe a novel bb allele which carries a P235L point mutation in the BB RING finger domain. This allele behaves similarly to described bb loss-of-function alleles and displays increased root meristem size due to a higher number of dividing, meristematic cells. In contrast, mature cell length is unaffected. The increased meristematic activity does not, however, translate into overall enhanced root elongation, possibly because bb mutation also results in an increased number of cell files in the vascular cylinder. These extra formative divisions might offset any growth acceleration by extra meristematic divisions. Thus, although BB dampens root cell proliferation, the consequences on macroscopic root growth are minor. However, bb mutation accelerates overall root growth when introduced into sensitized backgrounds. For example, it partially rescues the short root phenotypes of the brevis radix and octopus mutants, but does not complement their phloem differentiation or transport defects. In summary, we provide evidence that BB acts conceptually similarly in leaf(-like) organs and the primary root, and uncouples cell proliferation from elongation in the root meristem

    The co-chaperone p23 controls root development through the modulation of auxin distribution in the Arabidopsis root meristem.

    Get PDF
    Homologues of the p23 co-chaperone of HSP90 are present in all eukaryotes, suggesting conserved functions for this protein throughout evolution. Although p23 has been extensively studied in animal systems, little is known about its function in plants. In the present study, the functional characterization of the two isoforms of p23 in Arabidopsis thaliana is reported, suggesting a key role of p23 in the regulation of root development. Arabidopsis p23 mutants, for either form, show a short root length phenotype with a reduced meristem length. In the root meristem a low auxin level associated with a smaller auxin gradient was observed. A decrease in the expression levels of PIN FORMED PROTEIN (PIN)1, PIN3, and PIN7, contextually to an inefficient polar localization of PIN1, was detected. Collectively these results suggest that both Arabidopsis p23 isoforms are required for root growth, in particular in the maintenance of the root meristem, where the proteins are located

    CLERK is a novel receptor kinase required for sensing of root-active CLE peptides in <i>Arabidopsis</i>.

    Get PDF
    CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptides are secreted endogenous plant ligands that are sensed by receptor kinases (RKs) to convey environmental and developmental inputs. Typically, this involves an RK with narrow ligand specificity that signals together with a more promiscuous co-receptor. For most CLEs, biologically relevant (co-)receptors are unknown. The dimer of the receptor-like protein CLAVATA 2 (CLV2) and the pseudokinase CORYNE (CRN) conditions perception of so-called root-active CLE peptides, the exogenous application of which suppresses root growth by preventing protophloem formation in the meristem. &lt;i&gt;clv2&lt;/i&gt; as well as &lt;i&gt;crn&lt;/i&gt; null mutants are resistant to root-active CLE peptides, possibly because CLV2-CRN promotes expression of their cognate receptors. Here, we have identified the &lt;i&gt;CLE-RESISTANT RECEPTOR KINASE&lt;/i&gt; ( &lt;i&gt;CLERK&lt;/i&gt; ) gene, which is required for full sensing of root-active CLE peptides in early developing protophloem. CLERK protein can be replaced by its close homologs, SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE (SARK) and NSP-INTERACTING KINASE 1 (NIK1). Yet neither CLERK nor NIK1 ectodomains interact biochemically with described CLE receptor ectodomains. Consistently, &lt;i&gt;CLERK&lt;/i&gt; also acts genetically independently of &lt;i&gt;CLV2-CRN&lt;/i&gt; We, thus, have discovered a novel hub for redundant CLE sensing in the root

    Broad spectrum developmental role of Brachypodium AUX1.

    Get PDF
    Targeted cellular auxin distribution is required for morphogenesis and adaptive responses of plant organs. In Arabidopsis thaliana (Arabidopsis), this involves the prototypical auxin influx facilitator AUX1 and its LIKE-AUX1 (LAX) homologs, which act partially redundantly in various developmental processes. Interestingly, AUX1 and its homologs are not strictly essential for the Arabidopsis life cycle. Indeed, aux1 lax1 lax2 lax3 quadruple knock-outs are mostly viable and fertile, and strong phenotypes are only observed at low penetrance. Here we investigated the Brachypodium distachyon (Brachypodium) AUX1 homolog BdAUX1 by genetic, cell biological and physiological analyses. We report that BdAUX1 is essential for Brachypodium development. Bdaux1 loss-of-function mutants are dwarfs with aberrant flower development, and consequently infertile. Moreover, they display a counter-intuitive root phenotype. Although Bdaux1 roots are agravitropic as expected, in contrast to Arabidopsis aux1 mutants they are dramatically longer than wild type roots because of exaggerated cell elongation. Interestingly, this correlates with higher free auxin content in Bdaux1 roots. Consistently, their cell wall characteristics and transcriptome signature largely phenocopy other Brachypodium mutants with increased root auxin content. Our results imply fundamentally different wiring of auxin transport in Brachypodium roots and reveal an essential role of BdAUX1 in a broad spectrum of developmental processes, suggesting a central role for AUX1 in pooideae

    Antagonistic peptide technology for functional dissection of CLE peptides revisited.

    Get PDF
    In the Arabidopsis thaliana genome, over 1000 putative genes encoding small, presumably secreted, signalling peptides can be recognized. However, a major obstacle in identifying the function of genes encoding small signalling peptides is the limited number of available loss-of-function mutants. To overcome this, a promising new tool, antagonistic peptide technology, was recently developed. Here, this antagonistic peptide technology was tested on selected CLE peptides and the related IDA peptide and its usefulness in the context of studies of peptide function discussed. Based on the analyses, it was concluded that the antagonistic peptide approach is not the ultimate means to overcome redundancy or lack of loss-of-function lines. However, information collected using antagonistic peptide approaches (in the broad sense) can be very useful, but these approaches do not work in all cases and require a deep insight on the interaction between the ligand and its receptor to be successful. This, as well as peptide ligand structure considerations, should be taken into account before ordering a wide range of synthetic peptide variants and/or generating transgenic plants

    Meristemas: fontes de juventude e plasticidade no desenvolvimento vegetal

    Full text link

    Phloem development.

    No full text
    The evolution of the plant vascular system is a key process in Earth history because it enabled plants to conquer land and transform the terrestrial surface. Among the vascular tissues, the phloem is particularly intriguing because of its complex functionality. In angiosperms, its principal components are the sieve elements, which transport phloem sap, and their neighboring companion cells. Together, they form a functional unit that sustains sap loading, transport, and unloading. The developmental trajectory of sieve elements is unique among plant cell types because it entails selective organelle degradation including enucleation. Meticulous analyses of primary, so-called protophloem in the Arabidopsis thaliana root meristem have revealed key steps in protophloem sieve element formation at single-cell resolution. A transcription factor cascade connects specification with differentiation and also orchestrates phloem pole patterning via noncell-autonomous action of sieve element-derived effectors. Reminiscent of vascular tissue patterning in secondary growth, these involve receptor kinase pathways, whose antagonists guide the progression of sieve element differentiation. Receptor kinase pathways may also safeguard phloem formation by maintaining the developmental plasticity of neighboring cell files. Our current understanding of protophloem development in the A. thaliana root has reached sufficient detail to instruct molecular-level investigation of phloem formation in other organs

    Plant Biology: Brassinosteroids and the Intracellular Auxin Shuttle.

    No full text
    Throughout plant development, the phytohormones auxin and brassinosteroid regulate growth via their combinatorial input. A new study reveals a major impact of brassinosteroid signaling on intracellular auxin distribution and thereby nuclear auxin signaling, adding another layer of complexity to auxin-brassinosteroid crosstalk
    corecore