63 research outputs found

    Isogenic Pairs of hiPSC-CMs with Hypertrophic Cardiomyopathy/LVNC-Associated ACTC1 E99K Mutation Unveil Differential Functional Deficits

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is a primary disorder of contractility in heart muscle. To gain mechanistic insight and guide pharmacological rescue, this study models HCM using isogenic pairs of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) carrying the E99K-ACTC1 cardiac actin mutation. In both 3D engineered heart tissues and 2D monolayers, arrhythmogenesis was evident in all E99K-ACTC1 hiPSC-CMs. Aberrant phenotypes were most common in hiPSC-CMs produced from the heterozygote father. Unexpectedly, pathological phenotypes were less evident in E99K-expressing hiPSC-CMs from the two sons. Mechanistic insight from Ca2+ handling expression studies prompted pharmacological rescue experiments, wherein dual dantroline/ranolazine treatment was most effective. Our data are consistent with E99K mutant protein being a central cause of HCM but the three-way interaction between the primary genetic lesion, background (epi)genetics, and donor patient age may influence the pathogenic phenotype. This illustrates the value of isogenic hiPSC-CMs in genotype-phenotype correlations

    A Burkholderia pseudomallei toxin inhibits helicase activity of translation factor eIF4A

    Get PDF
    The structure of BPSL1549, a protein of unknown function from Burkholderia pseudomallei, reveals a similarity to Escherichia coli cytotoxic necrotizing factor 1. We found that BPSL1549 acted as a potent cytotoxin against eukaryotic cells and was lethal when administered to mice. Expression levels of bpsl1549 correlate with conditions expected to promote or suppress pathogenicity. BPSL1549 promotes deamidation of glutamine-339 of the translation initiation factor eIF4A, abolishing its helicase activity and inhibiting translation. We propose to name BPSL1549 Burkholderia lethal factor 1

    Two-dimensional liquid chromatography of PDMS-PS block copolymers

    No full text
    In this study, liquid chromatography at critical conditions of polystyrene (PS) and polydimethylsiloxane (PDMS) is used as the first dimension for the two-dimensional analysis of polydimethylsiloxane-block-polystyrene copolymers. Comprehensive two-dimensional liquid chromatography with size exclusion chromatography as the second dimension reveals information about the molar mass distributions of all separated fractions from the first dimension. Furthermore, fractions eluting at the critical conditions were collected and subjected to analysis in the second dimension at the critical adsorption point of the other block. These fractions were analyzed by Fourier transform infrared spectroscopy to determine their chemical compositions. The combination of the above approaches and the calibration of the evaporative light scattering detector for the first-dimension analysis yield deep insights into the molecular heterogeneity of the block copolymer samples. The composition of the samples and the chemical composition of the real block copolymer are also calculated by combining the results obtained at both critical conditions. © Springer-Verlag 2012

    Two-dimensional liquid chromatography of polystyrene-polyethylene oxide block copolymers

    No full text
    In this study, liquid chromatography at critical conditions of polystyrene (PS) and polyethylene oxide (PEO) is used as the first dimension for the two-dimensional analysis of PS-b-PEO copolymers. Comprehensive two-dimensional liquid chromatography, with size exclusion chromatography as the second dimension, reveals information about the molar mass distributions of all separated fractions from the first dimension. Furthermore, fractions eluting at the critical conditions of one block were collected and subjected to analysis in the second dimension at the critical conditions of the other block. These fractions were analysed by FTIR to determine their chemical compositions. The combination of the above approaches and the calibration of the evaporative light scattering (ELS) detector for the first-dimensional analysis yield deep insights into the molecular heterogeneity of the block copolymer samples. The composition of the samples and the chemical composition of the real block copolymer are also calculated by combining results obtained at both critical conditions. © 2012 Elsevier B.V

    Atomistic simulation methodologies for modelling the nucleation, growth and structure of interfaces

    No full text
    There have been many studies applying atomistic simulation techniques to investigate the structure and energetics of surfaces and interfaces. Almost all start by defining the basic structure of the interface, which is then simulated by static or dynamical methods. A different approach is adopted here, where we allow interfacial structures to evolve during the course of the simulation. In particular, three atomistic simulation methodologies for constructing models for thin film interfaces have been developed, including 'atom deposition', where the thin film is 'grown' by sequentially depositing atoms onto a support material to obtain information on nucleation and growth mechanisms; 'layer-by-layer' growth, where monatomic layers of a material are successively deposited on top of a substrate surface; and finally, 'cube-on- cube' whereby the whole of the thin film is placed directly on top of the substrate, before dynamical simulation and energy minimisation. The methodologies developed in this study provide a basis for simulating the nucleation, growth and structure of interface systems ranging from small supported clusters to monolayer and multilayer thin film interfaces. In addition, the layer-by-layer methodology is ideally suited to explore the critical thickness of thin films. We illustrate these techniques with studies on systems with large negative misfits. The calculations suggest that the thin films (initially constrained under tension due to the misfit) relax back to their natural lattice parameter resulting in the formation of surface cracks and island formation. The cube-on-cube methodology was then applied to the SrO/MgO system, which has a large (+ 20%) positive misfit. For this system, the SrO thin film underwent an amorphous transition which, under prolonged dynamical simulation, recrystallised revealing misfit-induced structural modifications, including screw-edge dislocations and low angle lattice rotations
    • …
    corecore