8,730 research outputs found

    The galactic gamma-ray distribution: Implications for galactic structure and the radial cosmic ray gradient

    Get PDF
    The radial distribution of gamma ray emissivity in the Galaxy was derived from flux longitude profiles, using both the final SAS-2 results and the recently corrected COS-B results and analyzing the northern and southern galactic regions separately. The recent CO surveys of the Southern Hemisphere, were used in conjunction with the Northern Hemisphere data, to derive the radial distribution of cosmic rays on both sides of the galactic plane. In addition to the 5 kpc ring, there is evidence from the radial asymmetry for spiral features which are consistent with those derived from the distribution of bright HII regions. Positive evidence was also found for a strong increase in the cosmic ray flux in the inner Galaxy, particularly in the 5 kpc region in both halves of the plane

    Pulsar and diffuse contributions to the observed galactic gamma radiation

    Get PDF
    With the acquisition of satellite data on the energy spectrum of galactic gamma-radiation, it is clear that such radiation has a multicomponent nature. A calculation of the pulsar gamma ray emission spectrum is used together with a statistical analysis of recent data on 328 known pulsars to make a new determination of the pulsar contribution to galactic gamma ray emission. The contributions from diffuse interstellar cosmic ray induced production mechanisms to the total emission are then reexamined. It is concluded that pulsars may account for a significant fraction of galactic gamma ray emission

    Approximation of Rough Functions

    Get PDF
    For given p∈[1,∞]p\in\lbrack1,\infty] and g∈Lp(R)g\in L^{p}\mathbb{(R)}, we establish the existence and uniqueness of solutions f∈Lp(R)f\in L^{p}(\mathbb{R)}, to the equation f(x)−af(bx)=g(x), f(x)-af(bx)=g(x), where a∈Ra\in\mathbb{R}, b∈R∖{0}b\in\mathbb{R} \setminus \{0\}, and ∣a∣≠∣b∣1/p\left\vert a\right\vert \neq\left\vert b\right\vert ^{1/p}. Solutions include well-known nowhere differentiable functions such as those of Bolzano, Weierstrass, Hardy, and many others. Connections and consequences in the theory of fractal interpolation, approximation theory, and Fourier analysis are established.Comment: 16 pages, 3 figure

    High Energy Neutrinos and Photons from Curvature Pions in Magnetars

    Get PDF
    We discuss the relevance of the curvature radiation of pions in strongly magnetized pulsars or magnetars, and their implications for the production of TeV energy neutrinos detectable by cubic kilometer scale detectors, as well as high energy photons.Comment: 19 pages, 4 figures, to appear in JCA

    Discovery of a Spin-Down State Change in the LMC Pulsar B0540-69

    Full text link
    We report the discovery of a large, sudden, and persistent increase in the spin-down rate of B0540-69, a young pulsar in the Large Magellanic Cloud, using observations from the Swift and RXTE satellites. The relative increase in the spin-down rate of 36% is unprecedented for B0540-69. No accompanying change in the spin rate is seen, and no change is seen in the pulsed X-ray emission from B0540-69 following the change in the spin-down rate. Such large relative changes in the spin-down rate are seen in the recently discovered class of 'intermittent pulsars', and we compare the properties of B0540-69 to such pulsars. We consider possible changes in the magnetosphere of the pulsar that could cause such a large change in the spin-down rate.Comment: 6 pages, 2 figures, accepted for publication in ApJ Letter

    Bounds on Cross-sections and Lifetimes for Dark Matter Annihilation and Decay into Charged Leptons from Gamma-ray Observations of Dwarf Galaxies

    Full text link
    We provide conservative bounds on the dark matter cross-section and lifetime from final state radiation produced by annihilation or decay into charged leptons, either directly or via an intermediate particle Ï•\phi. Our analysis utilizes the experimental gamma-ray flux upper limits from four Milky Way dwarf satellites: HESS observations of Sagittarius and VERITAS observations of Draco, Ursa Minor, and Willman 1. Using 90% confidence level lower limits on the integrals over the dark matter distributions, we find that these constraints are largely unable to rule out dark matter annihilations or decays as an explanation of the PAMELA and ATIC/PPB-BETS excesses. However, if there is an additional Sommerfeld enhancement in dwarfs, which have a velocity dispersion ~10 to 20 times lower than that of the local Galactic halo, then the cross-sections for dark matter annihilating through Ï•\phi's required to explain the excesses are very close to the cross-section upper bounds from Willman 1. Dark matter annihilation directly into Ï„\tau's is also marginally ruled out by Willman 1 as an explanation of the excesses, and the required cross-section is only a factor of a few below the upper bound from Draco. Finally, we make predictions for the gamma-ray flux expected from the dwarf galaxy Segue 1 for the Fermi Gamma-ray Space Telescope. We find that for a sizeable fraction of the parameter space in which dark matter annihilation into charged leptons explains the PAMELA excess, Fermi has good prospects for detecting a gamma-ray signal from Segue 1 after one year of observation.Comment: 11 pages, 4 figures. References added. Final published versio

    Nonlinear wave interaction and spin models in the MHD regime

    Full text link
    Here we consider the influence on the electron spin in the MHD regime. Recently developed models which include spin-velocity correlations are taken as a starting point. A theoretical argument is presented, suggesting that in the MHD regime a single fluid electron model with spin correlations is equivalent to a model with spin-up and spin-down electrons constituting different fluids, but where the spin-velocity correlations are omitted. Three wave interaction of 2 shear Alfven waves and a compressional Alfven wave is then taken as a model problem to evaluate the asserted equivalence. The theoretical argument turns out to be supported, as the predictions of the two models agree completely. Furthermore, the three wave coupling coefficients obey the Manley-Rowe relations, which give further support to the soundness of the models and the validity of the assumptions made in the derivation. Finally we point out that the proposed two-fluid model can be incorporated in standard Particle-In-Cell schemes with only minor modifications.Comment: 8 page

    Comment on ``Cosmological Gamma Ray Bursts and the Highest Energy Cosmic Rays''

    Get PDF
    In a letter with the above title, published some time ago in PRL, Waxman made the interesting suggestion that cosmological gamma ray bursts (GRBs) are the source of the ultra high energy cosmic rays (UHECR). This has also been proposed independently by Milgrom and Usov and by Vietri. However, recent observations of GRBs and their afterglows and in particular recent data from the Akeno Great Air Shwoer Array (AGASA) on UHECR rule out extragalactic GRBs as the source of UHECR.Comment: Comment on a letter with the above title published by E. Waxman in PRL 75, 386 (1995). Submitted for publication in PRL/Comment

    High speed sCMOS-based oblique plane microscopy applied to the study of calcium dynamics in cardiac myocytes

    Get PDF
    blique plane microscopy (OPM) is a form of light sheet microscopy that uses a single high numerical aperture microscope objective for both fluorescence excitation and collection. In this paper, measurements of the relative collection efficiency of OPM are presented. An OPM system incorporating two sCMOS cameras is then introduced that enables single isolated cardiac myocytes to be studied continuously for 22 seconds in two dimensions at 667 frames per second with 960 × 200 pixels and for 30 seconds with 960 × 200 × 20 voxels at 25 volumes per second. In both cases OPM is able to record in two spectral channels, enabling intracellular calcium to be studied via the probe Fluo-4 AM simultaneously with the sarcolemma and transverse tubule network via the membrane dye Cellmask Orange. The OPM system was then applied to determine the spatial origin of spontaneous calcium waves for the first time and to measure the cell transverse tubule structure at their point of origin. Further results are presented to demonstrate that the OPM system can also be used to study calcium spark parameters depending on their relationship to the transverse tubule structure
    • …
    corecore