111 research outputs found

    Water Abundance of Dunes in Gale Crater, Mars From Active Neutron Experiments and Implications for Amorphous Phases

    Get PDF
    We report the water abundance of Bagnold Dune sand in Gale crater, Mars by analyzing active neutron experiments using the Dynamic Albedo of Neutrons instrument. We report a bulk water‐equivalent‐hydrogen abundance of 0.68 ± 0.15 wt%, which is similar to measurements several kilometers away and from those taken of the dune surface. Thus, the dune is likely dehydrated throughout. Furthermore, we use geochemical constraints, including bulk water content, to develop compositional models of the amorphous fraction for which little information is known. We find the amorphous fraction contains ∼26‐ to 64‐wt% basaltic glass and up to ∼24‐wt% rhyolitic glass, suggesting at least one volcanic source for the dune material. We also find a range of hydrated phases may be present in appreciable abundances, either from the incorporation of eroded aqueously altered sediments or the direct alteration of the dune sand

    Identification and Description of a Silicic Volcaniclastic Layer in Gale Crater, Mars, Using Active Neutron Interrogation

    Get PDF
    The Dynamic Albedo of Neutrons instrument aboard the Mars Science Laboratory rover, Curiosity, has been used to map a stratigraphically conformable layer of high‐SiO² material in Gale crater. Previous work has shown that this material contains tridymite, a high‐temperature/low‐pressure felsic mineral, interpreted to have a volcanic source rock. We describe several characteristics including orientation, extent, hydration, and geochemistry, consistent with a volcaniclastic material conformably deposited within a lacustrine mudstone succession. Relationships with widely dispersed alteration features and orbital detections of hydrated SiO² suggest that this high‐SiO² layer extends at least 17 km laterally. Mineralogical abundances previously reported for this high‐SiO² material indicated that hydrous species were restricted to the amorphous (non‐crystalline) fraction, which is dominated by SiO². The low mean bulk hydration of this high‐SiO² layer (1.85 ± 0.13 wt.% water‐equivalent hydrogen) is consistent with silicic glass in addition to opal‐A and opal‐CT. Persistent volcanic glass and tridymite in addition to opal in an ancient sedimentary unit indicates that the conversion to more ordered forms of crystalline SiO² has not proceeded to completion and that this material has had only limited exposure to water since it originally erupted, despite having been transported in a fluviolacustrine system. Our results, including the conformable nature, large areal extent, and presence of volcanic glass, indicate that this high‐SiO² material is derived from the product of evolved magma on Mars. This is the first identification of a silicic volcaniclastic layer on another planet and has important implications for magma evolution mechanisms on single‐plate planets

    Preliminary Geological Map of the Peace Vallis Fan Integrated with In Situ Mosaics From the Curiosity Rover, Gale Crater, Mars

    Get PDF
    A geomorphically defined alluvial fan extends from Peace Vallis on the NW wall of Gale Crater, Mars into the Mars Science Laboratory (MSL) Curiosity rover landing ellipse. Prior to landing, the MSL team mapped the ellipse and surrounding areas, including the Peace Vallis fan. Map relationships suggest that bedded rocks east of the landing site are likely associated with the fan, which led to the decision to send Curiosity east. Curiosity's mast camera (Mastcam) color images are being used to refine local map relationships. Results from regional mapping and the first 100 sols of the mission demonstrate that the area has a rich geological history. Understanding this history will be critical for assessing ancient habitability and potential organic matter preservation at Gale Crater

    Hydrogen and chlorine abundances in the Kimberley formation of Gale crater measured by the DAN instrument on board the Mars Science Laboratory Curiosity rover

    Get PDF
    The Dynamic Albedo of Neutron (DAN) instrument on board the Mars Science Laboratory Curiosity rover acquired a series of measurements as part of an observational campaign of the Kimberley area in Gale crater. These observations were planned to assess the variability of bulk hydrogen and neutron‐absorbing elements, characterized as chlorine‐equivalent concentration, in the geologic members of the Kimberley formation and in surface materials exposed throughout the area. During the traverse of the Kimberley area, Curiosity drove primarily over the “Smooth Hummocky” unit, a unit composed primarily of sand and loose rocks, with occasional stops at bedrock of the Kimberley formation. During the Kimberley campaign, DAN detected ranges of water equivalent hydrogen (WEH) and chlorine‐equivalent concentrations of 1.5–2.5 wt % and 0.6–2 wt %, respectively. Results show that as the traverse progressed, DAN observed an overall decrease in both WEH and chlorine‐equivalent concentration measured over the sand and loose rocks of the Smooth Hummocky unit. DAN measurements of WEH and chlorine‐equivalent concentrations in the well‐exposed sedimentary bedrock of the Kimberley formation show fluctuations with stratigraphic position. The Kimberley campaign also provided an opportunity to compare measurements from DAN with those from the Sample Analysis at Mars (SAM) and the Alpha‐Particle X‐ray Spectrometer (APXS) instruments. DAN measurements obtained near the Windjana drill location show a WEH concentration of ~1.5 wt %, consistent with the concentration of low‐temperature absorbed water measured by SAM for the Windjana drill sample. A comparison between DAN chlorine‐equivalent concentrations measured throughout the Kimberley area and APXS observations of corresponding local surface targets and drill fines shows general agreement between the two instruments

    Hydrogen and chlorine abundances in the Kimberley formation of Gale crater measured by the DAN instrument on board the Mars Science Laboratory Curiosity rover

    Get PDF
    The Dynamic Albedo of Neutron (DAN) instrument on board the Mars Science Laboratory Curiosity rover acquired a series of measurements as part of an observational campaign of the Kimberley area in Gale crater. These observations were planned to assess the variability of bulk hydrogen and neutron‐absorbing elements, characterized as chlorine‐equivalent concentration, in the geologic members of the Kimberley formation and in surface materials exposed throughout the area. During the traverse of the Kimberley area, Curiosity drove primarily over the “Smooth Hummocky” unit, a unit composed primarily of sand and loose rocks, with occasional stops at bedrock of the Kimberley formation. During the Kimberley campaign, DAN detected ranges of water equivalent hydrogen (WEH) and chlorine‐equivalent concentrations of 1.5–2.5 wt % and 0.6–2 wt %, respectively. Results show that as the traverse progressed, DAN observed an overall decrease in both WEH and chlorine‐equivalent concentration measured over the sand and loose rocks of the Smooth Hummocky unit. DAN measurements of WEH and chlorine‐equivalent concentrations in the well‐exposed sedimentary bedrock of the Kimberley formation show fluctuations with stratigraphic position. The Kimberley campaign also provided an opportunity to compare measurements from DAN with those from the Sample Analysis at Mars (SAM) and the Alpha‐Particle X‐ray Spectrometer (APXS) instruments. DAN measurements obtained near the Windjana drill location show a WEH concentration of ~1.5 wt %, consistent with the concentration of low‐temperature absorbed water measured by SAM for the Windjana drill sample. A comparison between DAN chlorine‐equivalent concentrations measured throughout the Kimberley area and APXS observations of corresponding local surface targets and drill fines shows general agreement between the two instruments

    An interval of high salinity in ancient Gale crater lake on Mars

    Get PDF
    Precipitated minerals, including salts, are primary tracers of atmospheric conditions and water chemistry in lake basins. Ongoing in situ exploration by the Curiosity rover of Hesperian (around 3.3–3.7 Gyr old) sedimentary rocks within Gale crater on Mars has revealed clay-bearing fluvio-lacustrine deposits with sporadic occurrences of sulfate minerals, primarily as late-stage diagenetic veins and concretions. Here we report bulk enrichments, disseminated in the bedrock, of 30–50 wt% calcium sulfate intermittently over about 150 m of stratigraphy, and of 26–36 wt% hydrated magnesium sulfate within a thinner section of strata. We use geochemical analysis, primarily from the ChemCam laser-induced breakdown spectrometer, combined with results from other rover instruments, to characterize the enrichments and their lithology. The deposits are consistent with early diagenetic, pre-compaction salt precipitation from brines concentrated by evaporation, including magnesium sulfate-rich brines from extreme evaporative concentration. This saline interval represents a substantial hydrological perturbation of the lake basin, which may reflect variations in Mars’ obliquity and orbital parameters. Our findings support stepwise changes in Martian climate during the Hesperian, leading to more arid and sulfate-dominated environments as previously inferred from orbital observations

    Curiosity's Investigation at Vera Rubin Ridge

    Get PDF
    The Curiosity rover is exploring Vera Rubin Ridge (VRR), a ~6.5 km long and ~200 m wide topographic feature trending northeast-southwest across Aeolis Mons (informally known as Mt. Sharp) (Fig 1). In orbital data, VRR is distinct from the underlying Murray formation due to its relative erosional resistance and greater exposure of bedrock. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) orbital data show a hematite spectral signature over much of the ridge (Fig. 2). On the ground, Curiosity also observed hematite associated with the sedimentary rocks of the underlying Murray formation, although these detections are difficult to see with CRISM due to mixing with sand and dust

    Visible to near-infrared MSL/Mastcam multispectral imaging: Initial results from select high-interest science targets within Gale Crater, Mars

    Get PDF
    The Mastcam CCD cameras on the Mars Science Laboratory Curiosity Rover each use an 8-position filter wheel in acquiring up to 1600 × 1200 pixel images. The filter set includes a broadband near-infrared cutoff filter for RGB Bayer imaging on each camera and 12 narrow-band geology filters distributed between the two cameras, spanning the wavelength range 445–1013 nm. This wavelength region includes the relatively broad charge-transfer and crystal-field absorption bands that are most commonly due to the presence of iron-bearing minerals. To identify such spectral features, sequences of images taken with identical pointings through different filters have been calibrated to relative reflectance using pre-flight calibration coefficients and in-flight measurements of an onboard calibration target. Within the first 1000 sols of the mission, Mastcam observed a spectrally diverse set of materials displaying absorption features consistent with the presence of iron-bearing silicate, iron oxide, and iron sulfate minerals. Dust-coated surfaces as well as soils possess a strong positive reflectance slope in the visible, consistent with the presence of nanophase iron oxides, which have long been considered the dominant visible-wavelength pigmenting agent in weathered martian surface materials. Fresh surfaces, such as tailings produced by the drill tool and the interiors of rocks broken by the rover wheels, are grayer in visible wavelengths than their reddish, dust-coated surfaces but possess reflectance spectra that vary considerably between sites. To understand the mineralogical basis of observed Mastcam reflectance spectra, we focus on a subset of the multispectral data set for which additional constraints on the composition of surface materials are available from other rover instruments, with an emphasis on sample sites for which detailed mineralogy is provided by the results of CheMin X-ray diffraction analyses. We also discuss the results of coordinated observations with the ChemCam instrument, whose passive mode of operation is capable of acquiring reflectance spectra over wavelengths that considerably overlap the range spanned by the Mastcam filter set (Johnson et al. 2016). Materials that show a distinct 430 nm band in ChemCam data also are observed to have a strong near-infrared absorption band in Mastcam spectral data, consistent with the presence of a ferric sulfate mineral. Long-distance Mastcam observations targeted toward the flanks of the Gale crater central mound are in agreement with both ChemCam spectra and orbital results, and in particular exhibit the spectral features of a crystalline hematite layer identified in MRO/CRISM data. Variations observed in Mastcam multi-filter images acquired to date have shown that multispectral observations can discriminate between compositionally different materials within Gale Crater and are in qualitative agreement with mineralogies from measured samples and orbital data
    corecore