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Abstract The Dynamic Albedo of Neutrons instrument aboard the Mars Science Laboratory rover,
Curiosity, has been used to map a stratigraphically conformable layer of high-SiO2 material in Gale crater.
Previous work has shown that this material contains tridymite, a high-temperature/low-pressure felsic
mineral, interpreted to have a volcanic source rock. We describe several characteristics including
orientation, extent, hydration, and geochemistry, consistent with a volcaniclastic material conformably
deposited within a lacustrine mudstone succession. Relationships with widely dispersed alteration features
and orbital detections of hydrated SiO2 suggest that this high-SiO2 layer extends at least 17 km laterally.
Mineralogical abundances previously reported for this high-SiO2 material indicated that hydrous species
were restricted to the amorphous (non-crystalline) fraction, which is dominated by SiO2. The low mean
bulk hydration of this high-SiO2 layer (1.85 ± 0.13 wt.% water-equivalent hydrogen) is consistent with
silicic glass in addition to opal-A and opal-CT. Persistent volcanic glass and tridymite in addition to opal in
an ancient sedimentary unit indicates that the conversion to more ordered forms of crystalline SiO2 has not
proceeded to completion and that this material has had only limited exposure to water since it originally
erupted, despite having been transported in a fluviolacustrine system. Our results, including the
conformable nature, large areal extent, and presence of volcanic glass, indicate that this high-SiO2 material
is derived from the product of evolved magma on Mars. This is the first identification of a silicic
volcaniclastic layer on another planet and has important implications for magma evolution mechanisms
on single-plate planets.

Plain Language Summary Using the Dynamic Albedo of Neutrons instrument aboard the
Mars Science Laboratory rover, Curiosity, we mapped a silica-rich layer throughout a small region in Gale
crater known as Marias Pass. Previous work has shown that some rocks in Marias Pass contain minerals
formed in explosive volcanic eruptions. We determined several key characteristics including orientation,
extent, hydration, and elemental composition, which are consistent with material derived from a volcanic
deposit. This layer is likely related to nearby silica-rich material deposited by groundwater along subsurface
fractures, and geometric relationships to hydrated silica identified from orbit suggest that this high-silica
layer extends over at least 17 km. Mineralogical data from previous work indicates the crystalline fraction
is anhydrous. As such, we interpret the low hydration of this material, attributable to the amorphous
(non-crystalline) fraction, as being consistent with a significant abundance of volcanic glass in addition to
other hydrated phases. The presence of volcanic glass indicates that this material has had limited exposure
to water since its formation, because glasses tend to preferentially weather. Our results show that this layer
is parallel to surrounding rocks, covers a large area, and contains volcanic glass, indicating that it derived
from an explosive volcanic product.
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Key Points:
• A >1 m thick SiO2- and

tridymite-rich layer in Gale crater
likely extends over several kilometers

• This layer is stratigraphically
conformable, with low water content
consistent with significant volcanic
glass

• This material is consistent with an
evolved igneous material deposited
in a lacustrine environment
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1. Introduction
Orbital and surface investigations as well as laboratory analyses of Martian meteorites have shown that
the surface of Mars is dominated by basalt (e.g., Agee et al., 2013; McSween, 1984; McSween et al., 2006;
McSween, 2015; Mustard et al., 2005; Singer et al., 1979; Taylor et al., 2010), though felsic (e.g., Carter &
Poulet, 2013; Christensen et al., 2005; Cousin et al., 2017; Gross & Filiberto, 2014; Humayun et al., 2013;
Mangold et al., 2016) compositions have also been identified. Orbital identification of silicic igneous litholo-
gies in various regions of the Martian southern highlands (e.g., Christensen et al., 2005; Wray et al., 2013)
lend support to the existence of evolved igneous lithologies on early Mars. Felsic-intermediate composi-
tions are common on Earth where plate tectonics provides a familiar mechanism for magma evolution, but
there is a lack of evidence for plate tectonics on Mars, requiring other felsic-intermediate rock formation
mechanisms (Bandfield et al., 2000; Wyatt & McSween, 2002).

Recent results from the Mars Science Laboratory (MSL) Curiosity rover have shown evidence for a large
diversity of igneous materials in Gale crater, including SiO2-rich rocks. One such SiO2-rich deposit is at a
location known as “Marias Pass” where Curiosity detected SiO2 abundances >80 wt.% (Frydenvang et al.,
2017) as well as tridymite, a high-temperature/low-pressure SiO2 polymorph formed in silicic volcanic
eruptions (Morris et al., 2016). Hardgrove et al. (2011) demonstrated that high-SiO2 material in the near
subsurface (<50 cm), if it is associated with depleted levels of iron, would have a significant effect on the
neutron flux measured by the MSL Dynamic Albedo of Neutrons (DAN) instrument. We use in situ neutron
spectroscopy provided by the DAN instrument in conjunction with in situ geochemical, in situ multispec-
tral, and mineralogical results to characterize the extent and hydration of this material in Marias Pass. We
also incorporate other surface and orbital observations to map the layer's extent outside Marias Pass and to
investigate the implications for its origin.

1.1. Geologic Setting
Since landing in August 2012, Curiosity has been exploring Gale crater, an ∼150 km diameter sedimentary
basin on Mars. Curiosity has conducted detailed geologic investigations while traversing the crater floor and
up the slopes of the ∼5 km tall central peak, Aeolis Mons (informally Mount Sharp; Figure 1a). The data
returned are used to interpret the depositional environments of geologic units, which include lacustrine,
fluvial, and aeolian deposits of primarily basaltic material (Grotzinger et al., 2015). Some of these deposi-
tional environments have been interpreted as habitable (Grotzinger et al., 2014) with sedimentary sequences
deposited ∼3.8–3.6 Ga (Thomson et al., 2011), and possibly as late as ∼3.46 Ga with fluvial resurfacing up
to ∼1.10 Ga (Le Deit et al., 2013).

While traversing up the slopes of Mount Sharp, Curiosity has encountered several rock units including
those of the Bradbury group, the Murray formation of the Mount Sharp group, and the Stimson formation
of the Siccar Point group (Figure 2). The Murray, which this study focuses on, has a regional dip of ∼3◦ to
the northwest (Lewis & Turner, 2019; Kite et al., 2013), away from Mount Sharp. The Murray formation is
primarily a lacustrine mudstone (Fedo et al., 2017), though it also contains sandstones and conglomerates
(Grotzinger et al., 2015). As of January 2020, over 350 m of Murray stratigraphy has been observed. The low-
est exposed unit of the Murray formation is the Pahrump Hills member, a laminated lacustrine mudstone
with layers and lenses of cross-stratified fluvial sandstone (Grotzinger et al., 2015; Stack et al., 2019). As
shown in Figure 2, the Pahrump Hills member is stratigraphically overlain by the Hartmann's Valley mem-
ber of the Murray formation and unconformably overlain by the Stimson formation, an aeolian sandstone
(Banham et al., 2018; Fraeman et al., 2016).

1.2. Marias Pass
“Pahrump Hills” is the location (Figure 1b) where the geologic member of the same name was first described
in detail (Grotzinger et al., 2015), and where the “Telegraph Peak” mudstone drill sample was obtained.
Marias Pass, a 20–30 m wide shallow topographic depression, is ∼500 m to the southwest (Figure 1b), and
6 m above (Figure 2) Pahrump Hills. Curiosity entered Marias Pass on sol (Martian day) 991 after landing.
Marias Pass is located at the approximate midpoint of the Pahrump Hills member stratigraphy (∼ −4448 to
−4445 m; Figure 2).

Calcium sulfate veins are present throughout the lower Pahrump Hills member (Nachon et al., 2017) as well
as in Marias Pass and indicate a postdepositional history of aqueous alteration. Intact calcium sulfate veins
present in the Stimson at Marias Pass indicate that alteration continued after the deposition of the Stimson.
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Figure 1. Maps on Mars Reconnaissance Orbiter High-Resolution Imaging Science Experiment image mosaics from
Calef and Parker (2016). (a) Map of the Curiosity traverse showing the location of cross section E-E' (Figure 8e) and
orbital (CRISM) detections of hydrated SiO2 (𝛽, 𝛾 , 𝛿). (b) Map of a section of the traverse showing drill locations, an
unnamed fracture alteration halo, and cross sections C-C' and D-D' (Figures 8c and 8d). Location shown in (a). (c) Map
of Marias Pass showing DAN and ChemCam measurements. Location shown in (b). DAN surface footprints for
analyzed sites are shown as numbered black ellipses. The location of the Site 𝛼 Mastcam multispectral image discussed
in the text is marked by a yellow 𝛼. Cross sections A-A' and B-B' are shown in Figures 8a and 8b.

Crosscutting relationships between calcium sulfate veins and high-SiO2 fracture alteration halos, which we
discuss further in section 1.3, indicate that the calcium sulfate veins continued to form during and possibly
after alteration halo formation (Frydenvang et al., 2017; Yen et al., 2017).

The goal of our work is to map and characterize high-SiO2/low-FeOT material observed in Marias Pass to
determine the origin of this anomalous material. The lower ∼100 m of Murray stratigraphy (including the
Pahrump Hills member) has a mean SiO2 abundance of 54.4 ± 7.0 wt.% (1𝜎) and FeOT abundance of 17.8
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Figure 2. Stratigraphic column showing geologic units defined by the MSL team for the lowest ∼145 m of stratigraphy
investigated by Curiosity. The Buckskin drill target in Marias Pass is located at about the midpoint of the ∼23 m thick
Pahrump Hills member, which is primarily composed of laminated lacustrine mudstone.

± 5.2 wt.% (1𝜎) as measured by the MSL Chemistry and Camera (ChemCam) instrument (Bedford et al.,
2019). As reported previously by Frydenvang et al. (2017), SiO2 abundances ranging from 57–82 wt.% and
FeOT abundances ranging from 2–18 wt.% were observed in the Murray mudstone at Marias Pass. SiO2 and
FeOT are anticorrelated throughout the Murray (Bedford et al., 2019), including in Marias Pass (Figure 3),
where the highest-SiO2/lowest-FeOT material was measured in the Murray “Elk” and “Lion” areas exposed
on the northern slope of Marias Pass (Figure 1c).

Elevated thermal neutron counts in DAN data were observed at several locations in Marias Pass. This sug-
gested that the subsurface is enriched in hydrogen, depleted in neutron absorbing elements (e.g., iron),
or both (these effects are discussed in section 2.1). A drill sample was obtained from the high-SiO2 tar-
get “Buckskin” on sol 1060 (Figures 1 and 3, and Table 1). X-ray diffraction (XRD) experiments with
the MSL Chemistry and Mineralogy (CheMin) instrument have shown that Buckskin contains 17.1 ± 1.0
wt.% tridymite and 3.0 ± 0.4 wt.% cristobalite, high-temperature/low-pressure SiO2 polymorphs commonly
formed in felsic-intermediate volcanic eruptions (e.g., Morris et al., 2016; Rampe et al., 2017).

The absence of high-SiO2 mudstone just above the Lion area suggests that this material is confined to a
stratigraphic layer, as suggested by Frydenvang et al. (2017). The DAN instrument is sensitive to differences
in the depth distribution of hydrogen and neutron absorbers such as iron in the top∼50 cm of the subsurface,
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Figure 3. Plot of SiO2 versus FeOT for ChemCam targets of Murray
mudstone within Marias Pass. Labeled data points are reference
geochemistries used in simulations (Table 1). Colors represent macroscopic
neutron absorption cross section (Σabs) for each target. This strong
SiO2-FeOT anticorrelation demonstrates that low-Σabs (low-FeOT)
compositions in Marias Pass can be interpreted as having high-SiO2
abundances. These data were first reported by Frydenvang et al. (2017).
Representative error bars are provided for end-member compositions.

allowing us to determine the depth distribution of the high-SiO2/
low-FeOT material in Marias Pass and map its extent and relationship to
other SiO2-rich deposits in the Murray and Stimson formations.

1.3. Fracture Alteration Halos
A rare exposure of the Murray/Stimson unconformity is at the southern
end of Marias Pass (Banham et al., 2018). Several light-toned alteration
zones surrounding fractures have been discovered in Gale crater, includ-
ing in the Stimson just above the exposed unconformity in Marias Pass
(Figure 4). Upsection from Marias Pass, drill samples were taken from
fracture alteration halo targets and nearby unaltered bedrock targets in
the Stimson. The alteration halo target “Greenhorn” is located in “Bridger
Basin” ∼300 m south of and ∼10 m above Marias Pass, and the alteration
halo target “Lubango” is located in “Naukluft Plateau” ∼640 m south-
west of and ∼5 m above Bridger Basin (Figure 1b). Geochemical analyses
of sample drill tailings show that these alteration halos have elevated
SiO2 content (53–60 wt.%) relative to nearby unaltered bedrock targets
(43–45 wt.%) (Yen et al., 2017). Unlike Buckskin, these high-SiO2 alter-
ation halo samples did not contain tridymite. The association of these
alteration halos with fractures indicates their formation is a result of
aqueous alteration that post-dated the lithification of the Stimson forma-
tion (Frydenvang et al., 2017; Yen et al., 2017). Other light-toned fracture
alteration halos have been observed elsewhere in the Stimson formation
(Banham et al., 2018), in the Murray formation (Frydenvang et al., 2017;
Gasda et al., 2016; Yen et al., 2017), and in the Bradbury group.

The SiO2 enrichment mechanism which formed these alteration halos has been debated in the literature
and hypotheses include both passive enrichment through acid leaching and active enrichment through SiO2
sintering. Yen et al. (2017) argued that the Stimson alteration halos were passively enriched in SiO2 through
an acid leaching process in which acidic fluids preferentially remove some geochemical species, leaving
relatively more SiO2 behind. This is consistent with some geochemical differences observed between the
altered and unaltered Stimson samples. Evolved Gas Analysis (EGA) by the MSL Sample Analysis at Mars
(SAM) instrument of the Greenhorn sample has shown reduced nitrate and oxychlorine abundances relative
to nearby unaltered Stimson material (Sutter et al., 2017). This is also consistent with an acid leaching event
during the formation of the Stimson alteration halos. Alternatively, it has been suggested that the Stimson
high-SiO2 alteration halos were actively enriched in SiO2 via mobilization from an underlying source in the
Murray formation (Frydenvang et al., 2017; Yen et al., 2017). This helps explain the large SiO2 enrichment
observed in the Stimson halos, which is unlikely to be entirely due to acid leaching, and it is possible that
both passive and active enrichment occurred in multiple diagenetic (postdepositional alteration) stages (Yen
et al., 2017). Additionally, CO2 releases detected by the SAM instrument from the Greenhorn drill sample
are consistent with the presence of minor carbonates, which in turn would indicate that alkaline alteration
occurred after acidic alteration in this halo (Sutter et al., 2017). The most likely source for the SiO2 mobilized
into the Stimson alteration halos is the tridymite-bearing material observed in Marias Pass that underlies
the Stimson (Frydenvang et al., 2017).

2. Methods
We determined the layered geochemical structure and hydration of 16 sites covering the area of Curiosity's
traverse in Marias Pass and identified another location consistent with a high-SiO2/low-FeOT composition.
This involved integrating compositional data from the DAN, ChemCam, Alpha Particle X-ray Spectrometer
(APXS), and Mast Camera (Mastcam) instruments aboard the Curiosity rover.

2.1. Instruments
DAN is a neutron spectrometer with passive and active modes, which is composed of a pulsed neutron gen-
erator (PNG) and two He-3 neutron detectors. In passive mode, DAN detects neutrons created by galactic
cosmic ray spallation in the Martian subsurface. These data are gathered while the rover is stationary as
well as during rover mobility (Jun et al., 2013). In active mode, the PNG produces 14.1 MeV neutrons over
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Table 1
Bulk Mineralogy, SiO2, FeOT, and Cl Abundances of Modeled Geochemistries

Baseline Marias Pass High-SiO2

Murray Bedrocka Murray Bedrockb Buckskinc Telegraph Peakd

SiO2
e 56.3 ± 5.2 82.0 ± 5.9 71.0 ± 5.4 51.4 ± 5.0

FeOT
e 18.0 ± 3.8 1.63 ± 1.70 5.60 ± 2.10 18.7 ± 3.9

Clf 0.34 ± 0.01 0.34 ± 0.01 0.34 ± 0.01 0.34 ± 0.01
Σabs

g 0.0088 ± 0.0011 0.0055 ± 0.0007 0.0065 ± 0.0007 0.0086 ± 0.0009
Plagioclase — — 17.1 ± 1.2 27.1 ± 2.8
Sanidine — — 3.4 ± 0.7 5.2 ± 2.2
Magnetite — — 2.8 ± 0.3 8.2 ± 0.9
Hematite — — — 1.1 ± 0.5
Quartz — — — 0.9 ± 0.4
Anhydrite — — 0.7 ± 0.2 —
Tridymite — — 13.6 ± 0.8 —
Cristobalite — — 2.4 ± 0.3 7.3 ± 1.7
Otherh — — — 12.1 ± 3.6
Opal-CT — — 6.0 10.9
Amorphous — — 54 27.2 ± 15

Note. Oxide, elemental, and mineral abundances are listed in wt.%.
aSiO2 and FeOT averaged from “Mission,” “Piegan,” and “Fisch_Scale,” representative low-SiO2 endmember Chem-
Cam targets in Marias Pass and Bridger Basin. Cl abundance from APXS of Telegraph Peak drill tailings. No drill
sample taken for mineralogical analysis. bSiO2 and FeOT averaged from high-SiO2 endmember ChemCam targets
in the “Lion,” “Elk,” and “Meeteetse” areas in Marias Pass and Bridger Basin. Cl abundance from APXS of Buckskin
drill tailings. No drill sample taken for mineralogical analysis. cSiO2 and FeOT from “Blind_Gulch” ChemCam target
at the Buckskin drill hole. Cl abundance from APXS of Buckskin drill tailings. Mineralogy from Morris et al. (2016).
dSiO2 and FeOT from “Telegraph_Peak_ccam” ChemCam target. Cl abundance from APXS of Telegraph Peak drill
tailings. Mineralogy from Rampe et al. (2017). eSiO2 and FeOT reported with accuracy uncertainties from ChemCam.
fCl reported with precision uncertainties from APXS. gMacroscopic thermal neutron absorption cross section (Σabs)
is a measure of the probability that a material will absorb thermal neutrons, reported in cm2/g. hOther crystalline
components include forsterite, pigeonite, orthopyroxene, and fluorapatite. See Rampe et al. (2017) for abundances.

a typical measurement duration of 20 min. The time-of-flight and energy of neutrons, which return to the
detectors, are dependent on the subsurface composition, primarily hydrogen (which efficiently scatters neu-
trons, reducing kinetic energy) and elements like iron and chlorine which increase the macroscopic thermal
neutron absorption cross section (Σabs), a measure of the probability that a material will absorb thermal
neutrons. DAN detects neutrons scattered within the top∼50 cm. Since both hydrogen and iron are very effi-
cient at thermalizing and absorbing neutrons, respectively, DAN is sensitive to abundances of these species
in the Martian subsurface (e.g., Hardgrove et al., 2011; Mitrofanov et al., 2012; Sears, 1992) as well as their
depth distribution (e.g., Gabriel et al., 2018). Further details on the DAN instrument and its operation can
be found in the literature (Litvak et al., 2008; Mitrofanov et al., 2012).

Figure 4. Portion of Mastcam mosaic mcam04395 looking south, showing the southeastern area of Marias Pass
including Sites 16 and 𝛼. Light-toned fracture alteration halos are visible in the overlying Stimson sandstone. Similar
light-toned Stimson alteration halos were analyzed upsection at “Greenhorn” and “Lubango” and are enriched in SiO2.
Mastcam image IDs are listed in section S1 in the supporting information.
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Figure 5. Example of coadded DAN active measurements. Shown are DAN
CTN (thermal neutron) data for sols 992 and 1037a, which were coadded
for Site 4, plotted along with the coadded data. Measurements are only
coadded if they are spatially proximal and exhibit similar die-away curves.
Because measurement uncertainty is statistical, the coadded measurement
has better precision than either constituent measurement.

To derive results from DAN, we compare DAN data to simulation data,
which incorporates in situ geochemical abundances from the ChemCam
and APXS instruments. ChemCam uses Laser-Induced Breakdown Spec-
troscopy (LIBS), which ablates material from a target up to 7 m away
and records the spectrum of the resulting plasma over the 240–905 nm
wavelength range (Clegg et al., 2017; Maurice et al., 2012; Wiens et al.,
2012). Typically, a raster of several LIBS target points (e.g., 5 × 1 or 3 ×
3) is performed and 30 LIBS shots are taken per point, with each point
being 300–500 𝜇m in diameter. The first five shots are removed from anal-
yses due to surficial target dust contamination. The APXS sensor head
is located on the rover arm and can be placed in contact with selected
targets. Curiosity is equipped with a dust removal tool to minimize the
effect of dust cover for APXS surface measurements. Further details on
the APXS instrument can be found in the literature (e.g., Campbell et
al., 2014). Several elements, such as silicon and iron are quantified by
both ChemCam and APXS. Since the geochemistry varies considerably in
Marias Pass, we primarily use ChemCam-derived geochemistries because
the small ChemCam spotsize and larger data set captures more geo-
chemical variability. But because ChemCam does not typically quantify
chlorine abundance, we use chlorine abundances determined by APXS
from nearby and geochemically similar targets in our analyses.

The Mastcam instrument is a pair of charge-coupled device cameras with
fixed focal lengths (34 mm in the left camera and 100 mm in the right

camera) mounted roughly 2 m above the surface on the rover's mast (Malin et al., 2017). Each camera obtains
images through a Bayer pattern of red, green, and blue filters and telecentric microlenses bonded onto the
charge-coupled device and an eight-position narrowband filter wheel that provides the ability to obtain
spectra in 12 unique wavelengths between 445 and 1013 nm (Bell III et al., 2017).

2.2. DAN Active Data Analysis
After each pulse from the DAN PNG, neutrons from each detector are counted and recorded in 64 lognormal
time bins totaling 0.1 s. Total counts for each bin are summed over all pulses for a given measurement,
resulting in what is known as a neutron “die-away” curve because the neutron signal first increases then
decreases back to the background level. We subtract the background galactic cosmic ray-induced neutron
count rate, weighted by bin width, from each time bin as in Gabriel et al. (2018). See Gabriel et al. (2018) for
further DAN active preprocessing details.

To improve the statistical precision of data from those DAN active measurements with a signal-to-noise ratio
(SNR) less than 5, we coadded (summed the neutron counts on a bin-by-bin basis) multiple such measure-
ments together as performed in Gabriel et al. (2018). Measurements are only coadded if they are proximal
both laterally (within 2–3 m) and topographically (within 2–3 cm vertically), and there is no significant vis-
ible change in the material exposed at the surface, determined using rover camera imagery (Abercrombie
et al., 2019). Die-away curves for each coadded measurement are also compared to ensure thermal neutron
peak location, relative peak height, etc., are similar. DAN active measurements that had an SNR less than 5
for any time bin used in our analysis and could not be coadded to improve SNR, were not included in our
final results. Figure 5 is an example showing the individual die-away curves of the two DAN active measure-
ments coadded for Site 4, as well as the coadded die-away curve. Section S2 of the supporting information
describes the process of DAN active collocation and coaddition used in this work.

To estimate the subsurface geochemical composition, we use a forward modeling scheme where the thermal
neutron die-away data measured with DAN is compared to synthetic die-away data produced in simulations
using the Monte Carlo N-Particle 6 (MCNP6) particle transport code (Werner et al., 2018). These simula-
tions model a 3-dimensional environment, which includes the DAN PNG and detectors, a rover model,
the Martian atmosphere, and various subsurface geochemistries. We achieved a relative statistical uncer-
tainty <5% for neutron counts in each analyzed time bin in every simulation used for this study. We use
the same MCNP6 input file as that used by Gabriel et al. (2018) with subsurface geochemical abundances
from ChemCam and chlorine from APXS. Table 1 lists the SiO2, FeOT, Cl, Σabs, and mineralogy for the two
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Table 2
Parameter Ranges for Model Grids Used in MCMC Analyses

Model grid WEH range (wt.%) Σabs Range (cm2/g) Depth range (cm)
1 0.2–6.0 0.0042–0.0237 -
2A Top: 1.4–3.8 Top: 0.0088 5–25

Bottom: 0.2–3.0 Bottom: 0.0055–0.0086
2B Top: 1.8–3.4 Top: 0.0063–0.0101 5–25

Bottom: 1.2–2.8 Bottom: 0.0055

in situ geochemistries used in our models (“Baseline Marias Pass Murray Bedrock” and “High-SiO2 Murray
Bedrock”) along with the Buckskin and Telegraph Peak geochemistries for reference. The SiO2, FeOT, and
Σabs are derived from ChemCam data of specific targets (listed in the table notes) and Cl values are from rel-
evant APXS targets (listed in the table notes). The APXS target “Wallace” is the nearest APXS measurement
to the Marias Pass ChemCam targets used to generate the Baseline Marias Pass Murray Bedrock geochem-
istry. The Wallace Σabs of 0.0092 ± 0.0001 cm2/g agrees with the Baseline Marias Pass Murray Bedrock value
of 0.0088 ± 0.0011 cm2/g. No APXS measurements were taken at the locations of the Marias Pass ChemCam
measurements used to create the High-SiO2 Murray Bedrock geochemistry. The APXS Buckskin drill tail-
ings Σabs value of 0.0060 ± 0.0001 cm2/g agrees with the ChemCam Buckskin value of 0.0065 ± 0.0007 cm2/g
and the APXS Telegraph Peak drill tailings Σabs value of 0.0089 ± 0.0001 cm2/g agrees with the ChemCam
Telegraph Peak value of 0.0086± 0.0009 cm2/g. We conducted simulations to test the effect of calcium sulfate
veins on derived DAN results since these veins are present throughout the Murray stratigraphy (Vaniman
et al., 2018). In section S3 of the supporting information we demonstrate that these veins are not in sufficient
volumetric abundance in the subsurface to have a measurable effect on our analysis of data in this region.

Depending on the type of model, we vary several parameters including layer thickness/depth, hydrogen
abundance, and Σabs. The parameters spanned by our “grids” of models are listed in Table 2. Our initial
simulations for each site used a one-layer subsurface model grid in which individual models varied both
hydrogen abundance (reported as water-equivalent hydrogen or WEH) as well as iron and chlorine (as prox-
ies for Σabs) in a homogeneous subsurface. In order to span the range of Σabs observed in Gale crater, our
one-layer models vary iron between 0.48 and 14.22 wt.% and chlorine between 0.1 and 3.0 wt.%. Most sites in
Marias Pass fit best with lower-Σabs values than the Σabs of Baseline Marias Pass Murray Bedrock (Table 1).
Sites that had significant sand/rubble cover within the DAN field of view, or with a surface bedrock geo-
chemistry that was inconsistent with the Σabs of the best fit one-layer models, were analyzed using one or
both of the two-layer model grids. All two-layer models used in this study varied hydrogen abundance and
depth for each layer. Model Grid 2A varied the bottom layer geochemistry with the top layer set to the Base-
line Marias Pass Murray Bedrock geochemistry, and Model Grid 2B varied the top layer geochemistry with
the bottom layer set to the High-SiO2 Murray Bedrock geochemistry (Table 2). Chlorine abundances mea-
sured by APXS of drill tailings from the Telegraph Peak and Buckskin samples are both 0.34 ± 0.01 wt.%
(Table 1), indicating that chlorine does not vary significantly between the high-SiO2 Buckskin material and
the Murray immediately downsection, which was sampled at Telegraph Peak. No other elements measured
by ChemCam and APXS contribute enough to the Σabs of these samples to be responsible for significant
variations in Σabs. The low Σabs determined for most DAN active measurements analyzed in this work (see
section 3) do not allow for significant abundances of other efficient neutron absorbers, which are not mea-
sured by ChemCam or APXS, without requiring Fe or Cl to have nonphysical negative abundances. For the
above reasons, we take the variations observed in Σabs to be the result of variable FeOT, following the trend
seen in Figure 3. Section S4 in the supporting information describes the process of model generation and
implementation for the modeling grids used in this work.

To compare DAN data to MCNP6 simulation data, we analyze the time bins with the most dynamic thermal
neutron count rates (from 249–1838 μs after the pulse). At ∼249 μs, the PNG-induced epithermal neutron
count rate falls to background levels, so the background-subtracted neutron count rate is due to only thermal
neutrons. The area under the die-away curve in this range is normalized for both the DAN data and the
simulation data (Gabriel et al., 2018). Using the data processing and analysis pipeline from Gabriel et al.
(2018), a Markov-Chain Monte Carlo (MCMC) analysis is performed to evaluate the active DAN data across
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Table 3
Results From MCMC Analyses of Sites 1-16

Site Sola WEH (wt.%)b Σabs (cm2/g)b Depth (cm)c Model Grid
1 991 1.88 ± 0.29 0.0053 ± 0.0003 — 1
2 1037c 2.08 ± 0.38 0.0080 ± 0.0004 — 1
3 1037b 2.59 ± 0.32 0.0058 ± 0.0003 — 1
4 992, 1037a 2.74 ± 0.32 0.0056 ± 0.0003 — 1
5 1035d, 1042a 2.03 ± 0.37 0.0055d 12.0 ± 4.6 2B
6 1035c 1.92 ± 0.41 0.0055d 12.1 ± 4.5 2B
7 1035b 2.01 ± 0.32 0.0055 ± 0.0003 — 1
8 1049 1.54 ± 0.52 0.0055d 14.3 ± 4.0 2B
9 1051 1.54 ± 0.25 0.0046 ± 0.0003 — 1
10 1053, 1056 1.76 ± 0.41 0.0055d 12.4 ± 4.3 2B
11 1042b 2.03 ± 0.46 0.0126 ± 0.0009 — 1
12 1044a, 1066 1.22 ± 0.31 0.0110 ± 0.0007 — 1
13 1044b 0.92 ± 0.23 0.0090 ± 0.0005 — 1
14 995 0.93 ± 0.25 0.0074 ± 0.0005 — 1
15 1030, 1067 0.94 ± 0.37 0.0061 ± 0.0005 10.3 ± 5.1 2A
16 997–1028 1.36 ± 0.38 0.0060 ± 0.0004 10.2 ± 4.7 2A

Note. Both one- and two-layer models were used in Marias Pass, with two-layer models only being used when the
surface geochemistry did not agree with one-layer-modeled Σabs fit values.
aA sol number including an a, b, c, or d refers to the first, second, third, or fourth measurement taken on that sol,
respectively. Measurements with multiple sols listed have been coadded (see section 2.2). Site 16 is coadded from all six
measurements in the listed sol range. bReported WEH and Σabs are bulk values for one-layer models and high-SiO2
layer values for multiple-layer models. cBurial depth of high-SiO2 material in the bottom layer of a two-layer model
dBottom layer geochemistry for these sites was set to the High-SiO2 Murray Bedrock geochemistry (Table 1) based on
preliminary one-layer model results (see section S4 in the supporting information).

the modeled grid of simulations. See section S5 in the supporting information, Gabriel et al. (2018), and
Foreman-Mackey et al. (2013) for further details concerning MCMC analyses.

2.3. Mastcam Multispectral Data Analysis
Mastcam multispectral observations (Table S1 in the supporting information) were acquired at Marias
Pass and at nearby fracture alteration halos with elevated SiO2 and low FeOT. Spectra from the
high-SiO2/low-FeOT targets were compared to those from other observations of Murray rocks to determine
spectral characteristics that distinguish high-SiO2/low-FeOT materials in Mastcam spectra. Spectra from
additional Marias Pass targets (at Site 𝛼) were then evaluated for these characteristics. See section S6 in the
supporting information for further details concerning our Mastcam multispectral analysis.

3. Results
The results of MCMC analyses for each investigated DAN active site are listed in Table 3. WEH is a unit
that represents the water abundance if all measured hydrogen is in the form of H2O, and Σabs is the
macroscopic thermal neutron absorption cross section. Sites 1–10 are located in northeastern Marias Pass,
and DAN results show that all but one of these sites have relatively low-Σabs, which is consistent with a
high-SiO2/low-FeOT composition (Figure 3). DAN results show that Sites 5, 6, 8, and 10 contain over 10 cm
of unconsolidated material covering low-Σabs bedrock consistent with a high-SiO2/low-FeOT composition.
Sites 15 and 16, in southern Marias Pass, also are shown to contain relatively low-Σabs material beneath over
10 cm of Baseline Marias Pass Murray Bedrock (Figure 1). Results from Sites 2 (in northeastern Marias Pass),
11–13 (in northwestern Marias Pass), and 14 (in southern Marias Pass) are not consistent with low-Σabs
material, likely due to unconsolidated bedrock fragments and/or windblown sand in the top ∼50 cm. The
hydration of subsurface low-Σabs material in Marias Pass ranges from 0.94–2.74 wt.% WEH.

Plots showing the results of our DAN active MCMC analyses are available in Figures S1–S16 in the
supporting information. An example plot is shown in Figure 6 for Site 16. Site 16, on the south side of Marias

CZARNECKI ET AL. 9 of 20



Journal of Geophysical Research: Planets 10.1029/2019JE006180

Figure 6. Corner plot showing MCMC free parameter posterior distributions of models at Site 16 (Figures 1c and 4).
Nondiagonal frames represent 2-D posterior distributions and are used to understand instrument response to multiple
parameters and the measurement degeneracy. The diagonal frames represent the 1-D (marginalized) posterior
distribution and are used to determine the optimized value of the free parameters (shown above the frames). This
analysis most strongly discriminates the value of the lower layer water content (1.36 ± 0.38 wt.%) and the depth to the
bottom layer (10.23 ± 4.65 cm). The top layer water content is not strongly constrained by this analysis, likely due to
the fact that it is thin (as shown by the depth result). The lower layer contains a low-Σabs material consistent with the
lowest-Σabs material observed in Marias Pass (0.0055 barns). The “f” parameter parameterizes underestimated
uncertainty. See Figures S1–S16 in the supporting information for corner plots of each site.

Pass, is ∼25 m southwest of the high-SiO2 material exposed at the Lion area (Figures 1c and 4). MCMC anal-
ysis shows that a low-Σabs material is buried beneath surface bedrock. This low-Σabs material does not match
the geochemistry of the bedrock exposed at the surface, but is consistent with the highest-SiO2/lowest-FeOT
material present in the Lion area.

We also find that trends in DAN passive data in the Marias Pass region are consistent with our DAN active
results above. In the vicinity of Sites 1–8 the mean passive neutron count rate is relatively high (61.9 neutrons
per second), suggesting elevated hydrogen content and/or lower neutron absorber content. Lower mean
passive count rates in the vicinity of Sites 11–13 (29.7 neutrons per second) and moderate mean passive count
rates near Sites 14–16 (37.6 neutrons per second) suggest a lower level of hydration and/or higher neutron
absorber content near these sites. These DAN passive count rate trends are consistent with a high abundance
of high-SiO2/low-FeOT material near sites 1–8, a lower abundance of high-SiO2/low-FeOT material near
sites 14–16, and no high-SiO2/low-FeOT material near sites 11–13.

In Mastcam spectra, the high-SiO2/low-FeOT targets from the observations listed in Table S1 in the sup-
porting information were found to exhibit small 937 nm band depths and steep blue-to-red (447–638 nm)
slopes compared to other rock targets in the Murray formation (Figure 7). The 937 nm band depth is defined
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Figure 7. Mastcam parameter-space plot comparing spectra of
high-SiO2/low-FeOT targets to spectra of other rock targets in the Murray
formation. The shaded region indicates a Mastcam-based spectral
characterization of the high-SiO2/low-FeOT targets at Marias Pass and
nearby fracture alteration halos (observations listed in Table S1 in the
supporting information): high values of the blue-to-red slope (447–638 nm)
and small to negative values of the 937 nm band depth (measured beneath
a continuum line with shoulder positions at 805 and 1013 nm).
Representative error bars for each parameter are calculated from
uncertainties in the relative band-to-band reflectance. Spectra from Site 𝛼

share the same spectral characteristics of known high-SiO2/low-FeOT
targets. This is consistent with the prediction, based on DAN active
analysis, that Site 𝛼 exposes high-SiO2/low-FeOT bedrock. See Figures 1c
and 4 for Site 𝛼 location.

as the percent drop in R* at 937 nm beneath a continuum line with shoul-
der positions at 805 and 1013 nm. This parameter indicates the presence
of the broad Fe2+ absorption in iron-bearing primary basaltic minerals
(e.g., Clark et al., 1990). The absence of this absorption (as indicated
by negative band depth values) can be an indicator of iron depletion.
The blue-to-red slope is an indicator of the overall “redness” of the vis-
ible spectrum and is strongly influenced by nanophase iron oxide in
Mars' ubiquitous red surface dust, which exhibits a steep ∼400–600 nm
iron-oxygen charger transfer absorption edge. Light-toned rocks are more
easily “reddened” by a thin layer of surface dust than are dark-toned
mafic rocks. Therefore, high blue-to-red slope values can indicate bright
but otherwise spectrally bland materials, as would be expected for the
spectra of high-SiO2/low-FeOT targets (e.g., Smith et al., 2013). SiO2-rich
rocks observed by the Mars Exploration Rover Spirit's Pancam (a mul-
tispectral camera system similar to Mastcam) at Gusev crater were also
characterized by large blue-to-red spectral slopes (Rice et al., 2010).

Although these spectral characteristics are not unique to the high-SiO2/
low-FeOT targets, they are consistent among this compositional class and
can be used to determine whether other surface targets are spectrally sim-
ilar. Indeed, Figure 7 shows that Mastcam spectra of rocks at Site 𝛼 (from
the “Red Horn” and “Red Sheep” targets) fall within the same region of
this parameter space as all other known high-SiO2/low-FeOT targets. The
specific bounds on these parameters (gray box in Figure 7) exclude 70%
of the other 832 rock spectra from the Murray formation analyzed here.

4. Discussion
4.1. Orientation and Extent of High-SiO2 Layer
4.1.1. Subsurface Expression in Marias Pass
Sites 1, 3–10, 15, and 16 all contain material in the subsurface that has
a Σabs value consistent with high-SiO2/low-FeOT material measured by

ChemCam and APXS in the Elk and Lion areas (“Hi-SiO2 Murray” and “Buckskin” in Figure 3 and
Table 1). Mastcam multispectral analysis (Figure 7) of Site 𝛼 is also consistent with the high-SiO2/low-FeOT
material exposed in the Elk and Lion areas. Sites 2 and 11–14 do not contain high-SiO2/low-FeOT mate-
rial within the DAN field of view, suggesting that the top ∼50 cm of the subsurface is detrital material
transported from another location that filled in an eroded volume. This is supported by rover imagery show-
ing a heterogeneous mixture of transported bedrock fragments and sand at the surface in this area (see
section S4 in the supporting information).

A single subhorizontal layer can project through all high-SiO2/low-FeOT material observed in Marias Pass,
and our depth results constrain the thickness and orientation of this layer. Figures 8a and 8b are cross
sections within Marias Pass, locations of which are shown in Figure 1c. Relationships shown in Figure 8a
require a layer thickness of at least 1 m. The Lion area, Sites 5–10, and Site 12 are approximately colinear
(for clarity, Figure 8a only shows results from Site 8 of those near the center of the cross section). Since the
upper and lower contacts of the high-SiO2/low-FeOT layer are not observed within the DAN field of view at
these sites, the east-west dip (stratigraphic layer orientation relative to horizontal) is unknown, but we note
that a smaller or larger dip angle than that shown in Figure 8a requires a thicker high-SiO2/low-FeOT layer.
The dip from the Lion area to the top of the high-SiO2/low-FeOT material at Site 16 is at most 0.6◦ southwest
(Figure 8b). The Murray has a regional dip of ∼ 3◦ northwest (Kite et al., 2013; Lewis & Turner, 2019), and
the orientation of the high-SiO2/low-FeOT layer in Marias Pass is consistent with a minor local variation of
this dip.
4.1.2. Relationship to High-SiO2 Fracture Alteration Halos
Mass balance calculations using the amorphous (noncrystalline) phase fraction, relative crystalline phase
abundances, and absolute geochemical abundances of drill samples indicate that the amorphous compo-
nent of the Buckskin high-SiO2 bedrock (Morris et al., 2016) and Greenhorn and Lubango high-SiO2 fracture
alteration halos (Yen et al., 2017) contain little or no Al2O3. Other oxides including SiO2, FeOT, MgO, Na2O,
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Figure 8. Topographic cross sections (locations shown in Figure 1). A-A' and B-B' show interpreted subsurface
compositions based on DAN-derived Σabs values and surface compositions from ChemCam/Mastcam analyses.
(a) Cross section from Site 12 to the Lion area, 4X vertical exaggeration. One possible high-SiO2/low-FeOT layer dip is
shown, but the dip component in this direction is not constrained. The minimum thickness of the high-SiO2/low-FeOT
layer is constrained by DAN results from Sites 8–10. Site 10 bedrock (dashed, located about 2 m south of A-A') is
projected from its measured elevation. Site 9 is covered by a thin (<5 cm) veneer of sand but was modeled as a single
layer to reduce simulation complexity (see section S4 in the supporting information). (b) Cross section from Site 16 to
the Lion area, 4X vertical exaggeration. Relationships shown here constrain the maximum dip of the
high-SiO2/low-FeOT layer in this direction. (c, d) Cross sections from Marias Pass to Naukluft Plateau (location of the
Lubango fracture alteration halo) and Bridger Basin (location of the Greenhorn fracture alteration halo). The projected
apparent dip of the high-SiO2/low-FeOT layer, based on a true regional dip of 3◦ northwest (Kite et al., 2013; Lewis &
Turner, 2019) is 0.11◦ and 1.38◦ from Marias Pass to Lubango and Greenhorn, respectively. This places the
high-SiO2/low-FeOT layer ∼18 m below Lubango, ∼2 m below Greenhorn, and ∼1.5 m below an unnamed alteration
halo. These vertical proximities support the hypothesis that the high-SiO2/low-FeOT bedrock was a source for the SiO2
enrichment of the overlying alteration halos. (e) Cross section passing through Marias Pass and hydrated SiO2 deposits
observed by CRISM (Fraeman et al., 2016; Seelos et al., 2014), 4X vertical exaggeration. <0.5◦ dips are required for
stratigraphic equivalence between Marias Pass and Sites 𝛽 and 𝛾 , consistent with a 3◦ regional dip to the northwest.

and P2O5 all have similar abundances in the high-SiO2 bedrock and alteration halos. Exceptions include
TiO2, CaO, and SO3. CaO and SO3 abundances in the alteration are due to abundant crystalline calcium sul-
fates and amorphous sulfate phases, which likely were precipitated at least in part after the SiO2 enrichment
diagenetic event (Frydenvang et al., 2017; Yen et al., 2017). TiO2 is generally immobile during diagenesis
(e.g., Yen et al., 2017), and the reduced abundance of TiO2 in the alteration halos could be due to passive
reduction as other oxides such as SiO2 are added to the halo. Similar geochemical trends were observed
with ChemCam and APXS on an unnamed alteration halo (Figures 1b and 8d) in the Murray formation
near Bridger Basin (Banham et al., 2018). These geochemical similarities are consistent with these materials
being part of a shared diagenetic system during amorphous phase formation.

Using the Murray formation's 3◦ northwest regional dip (Kite et al., 2013; Lewis & Turner, 2019), we extrapo-
lated the elevation of the Marias Pass high-SiO2/low-FeOT bedrock to the locations of the Stimson alteration
halos Lubango (in Naukluft Plateau, Figure 8c) as well as Greenhorn and an unnamed alteration halo
(in/near Bridger Basin, Figure 8d). We find that the high-SiO2/low-FeOT bedrock projects ∼18 m below
Lubango, ∼2 m below Greenhorn, and ∼1.5 m below the unnamed alteration halo. The close proximity
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of these alteration halos to the underlying high-SiO2/low-FeOT bedrock supports the hypothesis that this
bedrock layer is the source of SiO2 enrichment for the alteration halos (Frydenvang et al., 2017). If the
alteration halos are in fact genetically related to the high-SiO2/low-FeOT bedrock, this implies that the
high-SiO2/low-FeOT bedrock layer extends throughout the area spanned by Marias Pass, Bridger Basin, and
Naukluft Plateau (about 1 km, Figure 1b).

Alteration halos were also observed earlier in the traverse,∼53–55 m below and∼4.9 km northeast of Marias
Pass in the Bradbury group. In this area, between sols 383 and 409, anomalously low Σabs were detected by
several DAN active measurements, consistent with high-SiO2/low-FeOT material. These alteration halos lie
∼11 m below the elevation to which the high-SiO2/low-FeOT bedrock projects from Marias Pass, given the
regional dip of the Murray formation. The Bradbury group could either underlie the Murray formation or
be coeval (deposited at the same time) with it (Grotzinger et al., 2015); so the relationship between these
alteration halos and those in the Murray formation above Marias Pass is unknown. If the Bradbury group
underlies the Murray formation stratigraphy, then the presence of these alteration halos at their observed
location could indicate (1) a change in structural dip direction or magnitude between Marias Pass and these
alteration halos, (2) the mobilization of SiO2 downsection instead of upsection as with the Murray/Stimson
alteration halos, or (3) the presence of a distinct high-SiO2 reservoir underlying these Bradbury group alter-
ation halos. If the Bradbury group is coeval with the Murray formation and represents a more proximal
environment to the distal lacustrine Murray (Grotzinger et al., 2015), then the presence of these alteration
halos below the projected elevation of Marias Pass suggests that they are related to a distinct, underlying
high-SiO2 reservoir.
4.1.3. Relationship to Orbital Detections of Hydrated SiO2
Seelos et al. (2014) and Fraeman et al. (2016) used the orbital Compact Reconnaissance Imaging Spectrom-
eter for Mars (CRISM) hyperspectral instrument to identify three locations (Sites 𝛽, 𝛾 , and 𝛿 in Figure 1a)
near the MSL traverse which exhibit spectral signatures consistent with hydrated SiO2. These detections are
based on absorptions at 1.4 μm (OH), 1.9 μm (H2O), and 2.2 μm (Si-OH), which are consistent with either
hydrated SiO2 glass or opal (Mustard et al., 2008; Rapin et al., 2018). Site 𝛽 is ∼8 km southwest of Marias
Pass, Site 𝛾 is ∼9.5 km northeast of Marias Pass, and Site 𝛿 is about 1 km south of Marias Pass (Figure 1a).
Marias Pass and Sites 𝛽 and 𝛾 are approximately colinear from southwest to northeast (azimuth 054). Since
the Murray formation has a northwest regional dip (Kite et al., 2013; Lewis & Turner, 2019) that is nearly
perpendicular to this line, these deposits may be bedrock exposures of the high-SiO2/low-FeOT layer dis-
covered in Marias Pass. Marias Pass lies ∼20 m above Site 𝛽 and ∼80 m above Site 𝛾 (Figure 8e). If these
sites share a common stratigraphic layer with Marias Pass, the maximum regional dip of this layer along
this azimuth is constrained to <0.5◦ to the southwest or northeast, in agreement with the regional north-
west dip direction. A similar analysis shows that Site 𝛿 and Marias Pass would lie on the same stratigraphic
horizon with a regional dip ∼3.5◦ northwest, also in good agreement with the ∼3◦ northwest regional dip.
These orbital detections expand the observed extent of high-SiO2 bedrock over an area at least 17.5 km
wide, which strongly favors a stratigraphically conformable relationship within the Murray formation, and
a depositional origin.

4.2. Hydration of High-SiO2 Material
4.2.1. Comparison to Other Data Sets
ChemCam also can determine hydrogen abundances, though the LIBS spot size is significantly smaller than
the DAN field of view. Hydrogen abundances measured by ChemCam are typically reported as H2O, cal-
culated in the same way as DAN WEH values. The mean hydration of 14 high-SiO2 targets measured by
ChemCam in the Lion area is 4.0 ± 1.2 wt.% H2O. No DAN measurements were taken in this exact loca-
tion, but the 1.85 ± 0.13 wt.% mean WEH measured by DAN in Marias Pass indicates that this ChemCam
result is not representative of average Marias Pass high-SiO2/low-FeOT material. In contrast, DAN active
measurements centered over the Lubango fracture alteration halo show a bulk halo hydration (∼5.1 ± 1.0
wt.% WEH) that agrees well with ChemCam results from within the Lubango drill sample (4.0 ± 1.2 wt.%
H2O) (Rapin et al., 2018).

The much smaller field of view for individual ChemCam targets is potentially responsible for the discrepancy
between DAN and ChemCam results in Marias Pass. The DAN field of view is a volume bounded by an ∼1.5
m radius footprint on the surface and extends to a depth of ∼50 cm. ChemCam, on the other hand, ablates
material from points 350–550 μm in diameter to a depth of <600 μm (Wiens et al., 2012). Unfortunately,
no DAN active measurement was taken in coincidence with ChemCam targets in the Lion area. But given
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that the 14 high-SiO2 ChemCam targets in the Lion area were within a 1.5 m radius, it is likely that the
ChemCam results are representative of this area, comparable in size to a DAN field of view. Thus, while the
bulk H2O of the 3 m wide Lion area is well represented by ChemCam results, DAN WEH results represent
a bulk view spanning Marias Pass over a few tens of meters.

The SAM tunable mass spectrometer aboard Curiosity also measures water content (sourced from both H2O
and OH−) via EGA (Sutter et al., 2017). SAM measured 1.8 ± 0.9 wt.% H2O from the Buckskin sample,
which agrees well with our results. However, possible partial dehydration prior to SAM analysis (Rapin et al.,
2018) could indicate that the Buckskin sample was significantly more hydrated prior to sample handling,
consistent with the ChemCam H2O results for high-SiO2 Murray targets in the Lion area. SAM EGA data
can also be used to understand the hydrated phases present in a sample. The Buckskin sample shows three
evolved water temperature peaks. The first, at <400 ◦C, is likely due to H2O evolved from opal-A; the sec-
ond is from an unidentified source that could be jarosite (though in abundance below the CheMin detection
limit); and the third, broadest peak, above ∼500 ◦C is attributed to inclusion water in the amorphous frac-
tion, which is likely to be a volcanic glass component based on CheMin XRD analysis (Sutter et al., 2017).
As we demonstrate in the following section, significant contributions to evolved water from both opal-A
and glass are consistent with our conclusion that both amorphous phases contain a significant fraction of
the WEH measured by DAN. Sutter et al. (2017) also reports EGA results for H2 and H2S from the Buckskin
sample, but these species (each <0.01 wt.%) do not make significant contributions to the WEH measured
by DAN.
4.2.2. Constraints on Amorphous SiO2 Phase Abundances
Due to a lack of hydrous crystalline phases in the Buckskin drill sample, the water content of the high-SiO2
Murray material is contained in the amorphous phase (Rapin et al., 2018). The Buckskin drill sample con-
tained 60 wt.% amorphous material, which had a SiO2 abundance of 77 wt.%, based on CheMin and APXS
mineralogical and geochemical analyses (Morris et al., 2016). The broad XRD amorphous peak in Buckskin
is consistent with a mixture of ∼6 wt.% opal-CT and ∼33 wt.% opal-A and/or rhyolitic glass in the bulk sam-
ple (Morris et al., 2016; Rampe et al., 2017), which accounts for the large SiO2 abundance of the amorphous
fraction. Based on the presence of opal-CT, Morris et al. (2016) argue that the volcanic glass has been altered
wholly or in part to opal-A.

The irregular structure of amorphous SiO2 phases provides sites for H2O and OH− to bind and fill voids,
which are lacking in microcrystalline (e.g., chalcedony) and macrocrystalline (quartz) phases (Smith et al.,
2013). Most terrestrial opals contain 4–9 wt.% water (Segnit et al., 1965), whereas SiO2 glasses on Earth
only hold up to 3 wt.% H2O (Graetsch et al., 1994; Newman et al., 1986; Rapin et al., 2018). Rapin et al.
(2018) describes a correlation between hydrogen and SiO2 abundances in the high-SiO2 Murray material at
Marias Pass. Using a ChemCam-derived hydration of 4.0 ± 1.3 wt.% H2O for Buckskin, they predict that the
measured hydrogen resides in opal-A and conclude that the Buckskin opal-A has a maximum hydration of
8.0 ± 2.6 wt.% H2O. But our significantly lower DAN-derived WEH value suggests there may be a significant
volcanic glass component in Marias Pass.

Using the mean bulk hydration measured by DAN (1.85 ± 0.13 wt.% WEH) and other geochemical and
mineralogical constraints, we can calculate a minimum abundance of SiO2 glass in the high-SiO2/low-FeOT
material at Marias Pass. In a system of n hydrated phases, we calculate the abundance of the ith hydrated
phase by solving

n∑

i=1
[WEH]i[i] = [WEH]bulk

where [WEH]i ≡ wt. fraction WEH of the ith phase and [i] ≡ bulk abundance of the ith phase. To obtain the
minimum abundance of SiO2 glass we assume a maximum hydration of 3 wt.% WEH in the glass (Graetsch
et al., 1994; Newman et al., 1986; Rapin et al., 2018), a ferrihydrite hydration of 4.0 wt.% WEH (Gabriel et al.,
2018), and an opal hydration of 7.4± 1.6 wt.% H2O reported by Rapin et al. (2018) for the opal-A in high-SiO2
fracture alteration halos that was shown to be consistent with targeted DAN experiments of those features.
Rapin et al. (2018) has shown that hydrogen abundance is correlated with SiO2 abundance in ChemCam
high-SiO2 Murray targets, indicating that only minor water is contained in non-SiO2 phases. For this reason,
we do not include non-SiO2 hydrous phases except ferrihydrite reported by Morris et al. (2016). Ferrihydrite
abundance in the Buckskin drill sample is limited to ∼1.7 wt.% (by available FeOT in the amorphous frac-
tion) and accounts for a maximum of 0.07 wt.% WEH. Given these constraints and assumptions, we find
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the minimum abundance of SiO2 glass in the high-SiO2/low-FeOT material to be 15.0 ± 13.5 wt.%. The pos-
sible presence of other hydrated amorphous phases, such as amorphous sulfates, would reduce the water
inventory available for the SiO2 phases and shift the glass-to-opal ratio toward more abundant glass, thus
supporting our conclusion that 15.0 ± 13.5 wt.% SiO2 glass is a minimum abundance. The present retention
of at least minor SiO2 glass supports the silicic volcaniclastic origin of this material.

4.3. Origin of SiO2-rich Sediments and Implications for Mars Magmatic History
The presence of silicic glass and opal along with tridymite in a discrete stratigraphic interval in Marias Pass
strongly suggests that this material is derived from an evolved igneous protolith. Hydrated SiO2 has been
identified in many locations on Mars in addition to Gale crater (e.g., Glotch et al., 2006; Milliken et al.,
2008; Mustard et al., 2008; Squyres et al., 2008; Sun & Milliken, 2015; Weitz et al., 2011). Multiple pathways
for SiO2 enrichment in Martian environments have been proposed, including active enrichment through
SiO2 sintering (Frydenvang et al., 2017; Ruff et al., 2011; Skok et al., 2010), passive enrichment through
acid leaching (McAdam et al., 2008; Squyres et al., 2008; Weitz et al., 2011; Yen et al., 2017), and fractional
crystallization in an evolved magmatic system (Carter & Poulet, 2013; Christensen et al., 2005; Edwards et al.,
2017; McCubbin et al., 2008; Udry et al., 2014, 2018). The crystalline mineralogy of the Buckskin sample is
consistent with a silicic volcanic deposit from an evolved source (Morris et al., 2016; Rampe et al., 2017).
Alternatively, it has been proposed that tridymite and cristobalite could form in nonvolcanic environments
on Earth, but no such mineral deposits have been unambiguously documented. For instance, tridymite and
cristobalite were inferred in a terrestrial deep-sea chert by Klasik (1975). This identification was based on a
visual resemblance in photomicrographs; however, XRD experiments were unable to detect these minerals,
possibly due to low abundances.

Without plate tectonics, other mechanisms must be invoked to produce evolved magma on Mars. One
possible mechanism is mantle plumes that “shut off.” Hawaiian volcanism provides a terrestrial analog
for this mechanism. The Hawaiian-Emperor seamount chain consists of volcanic edifices fed by a mantle
plume beneath the overriding Pacific plate. When a volcanic edifice is transported away from its mantle
plume source, the magma supply decreases and shallow magma reservoirs solidify. Deeper magma reser-
voirs persist but are cut off from the plume source and can produce more evolved magmas through crystal
fractionation of the deep magma chambers (Clague & Sherrod, 2014). On Mars, a mantle plume cannot be
cut off from an associated volcanic edifice due to plate motion, but mantle plumes do “shut off,” possibly
resulting in evolved magmas as at terrestrial hot spots that are cut off from their mantle plumes.

But experiments and simulations have shown that it is not necessary to “shut off” a mantle plume to pro-
duce evolved magma on Mars. Experiments conducted by McCubbin et al. (2008) demonstrated that a wet
basaltic magma (1.67 wt.% water) at the base of a thick Martian crust can be enriched in SiO2 up to an
intermediate igneous composition through a single stage of fractional crystallization. Additionally, experi-
ments have shown that intraplate magmatism can differentiate a tholeiitic basaltic parent melt to a rhyolitic
composition (Whitaker et al., 2007), and ChemCam analyses of float rocks and conglomerate clasts in Gale
crater (Cousin et al., 2017) follow compositional trends consistent with this magmatic evolution (Edwards
et al., 2017). Further, simulations conducted by Udry et al. (2018) demonstrated that these Gale crater felsic
compositions are consistent with mantle melting and fractional crystallization in intraplate magmatism.

In the presence of water, opaline SiO2 is expected to alter to quartz under typical Martian surface conditions
in <400 Ma (Tosca & Knoll, 2009) following the typical SiO2 diagenesis pathway: glass → opal-A → opal-CT
→ chalcedony → quartz (e.g., Smith et al., 2013; Tosca & Knoll, 2009; Williams et al., 1985). Opaline SiO2
deposits observed on Mars today have likely experienced only intermittent, if any, contact with liquid water
since their formation (Tosca & Knoll, 2009). The presence of opal-CT in the Buckskin drill sample and
minor (∼1 wt.%) quartz in the Lubango fracture alteration halo indicate that diagenetic alteration of opal-A
did occur in these materials, but the present retention of opal-A in both the bedrock and alteration halos
indicates that diagenesis did not proceed to completion and that these materials have been in contact with
liquid water for <400 Ma since the formation of secondary amorphous phases (McLennan et al., 2019; Tosca
& Knoll, 2009).

Opaline SiO2 in the Buckskin drill sample could be either detrital (Morris et al., 2016) or a product of
tridymite/cristobalite alteration (Hurowitz et al., 2017). Due to the large fraction of detrital igneous sediment
and the likelihood that the amorphous component of high-SiO2 material is a mixture of volcanic glass and
its alteration products, Hurowitz et al. (2017) suggests that mudstone sediments in Gale crater are sourced
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from igneous provinces and are not recycled sediments. This suggests that the high-SiO2 material in Marias
Pass is the product of erosion from a primary SiO2-rich volcanic source rock in the Gale lake catchment. The
fine laminations observed in Marias Pass high-SiO2 material are consistent with density sorting of sediment
in a lacustrine environment, which would carry less dense, SiO2-rich clasts to more distal sections of the
lake (Hurowitz et al., 2017). Edwards et al. (2017) suggested that larger float rocks observed earlier in the
MSL traverse were sourced from regions closer to Gale crater than the generally finer-grained mafic mud-
stones, but the observation of a high-SiO2/low-FeOT mudstone layer suggests that more distal felsic sources
could also have contributed.

A weak correlation exists between ChemCam-derived SiO2 abundance and chemical index of alteration
(CIA) in the Murray formation (Bedford et al., 2019). CIA is a measure of how chemically altered a sample
is. Due to the postdepositional alteration of the high-SiO2 Murray in Marias Pass (see section 1.3), Bedford
et al. (2019) did not include these data in their CIA analyses. This correlation is not significant enough to
explain the variations in SiO2 observed within the Murray formation, suggesting that SiO2 abundance in the
Murray is likely a result of source region geochemistry. Based on larger CIA values, higher-SiO2 abundances,
and the presence of cristobalite (in the Telegraph Peak and Buckskin drill samples) and tridymite (in the
Buckskin drill sample), Bedford et al. (2019) argue that the Murray formation records a detrital contribution
from a more evolved magmatic source that is not present in the Bradbury group. As Bedford et al. (2019)
discusses, the higher Murray CIA values could be a result of the felsic mineralogy produced by an evolved
magmatic source.

The SiO2 abundance in Marias Pass is significantly larger than in the Murray stratigraphy above or below
it, suggesting a temporal evolution of source region during Murray deposition. The low density of tridymite
and cristobalite allows these minerals to remain entrained in fluviolacustrine systems longer than basaltic
sediments. Therefore, the source of these minerals could be relatively distant from the Murray formation
(Bedford et al., 2019). The nitrate and oxychlorine contents of the Buckskin sample are greater than other
Murray samples analyzed by SAM EGA, also suggesting an alternate (or additional) source for this material
(Sutter et al., 2017), possibly due to an evolving fluvial catchment feeding Gale lake.

The tridymite and SiO2-rich glass in Marias Pass could also have been deposited as sediment derived from
impact melt. However, the high abundance of tridymite and SiO2 in Marias Pass would require a significant
sedimentary fractionation by relative density if the tridymite-bearing impact melt formed in typical Martian
basaltic crust. Alternatively, the impact melt could have been enriched in SiO2 at the time of formation,
but this would likely require an impact into a region of preexisting high-SiO2 material, requiring another
SiO2 enrichment mechanism preceding the impact, though compositional segregation of impact melt is
also possible (Bouska & Bell III, 1993). Terrestrial and lunar impact melts are typically enriched in Al and
depleted in Si (Bouska & Bell III, 1993), inconsistent with the SiO2-rich, Al2O3-poor material in Marias Pass.

Palucis et al. (2014) mapped a >1000 km2 catchment outside of Gale crater that fed Peace Vallis, an 80
km2 alluvial fan between the Curiosity traverse and the Gale crater rim to the northwest. Like the Murray
formation, the Peace Vallis fan was deposited in the Late Noachian/Early Hesperian (Palucis et al., 2014). If
the drainage network that fed Peace Vallis was active during the deposition of the Murray formation, it would
have provided an evolving sediment source as the network incised into the plains north of Gale crater. This
catchment area may have included ash fall deposits related to volcanic plains further north (Palucis et al.,
2014), and this is a possible source of the tridymite-bearing material in Marias Pass. An extensive fluvial
network entering Gale crater from the south is another possible sediment source.

The lateral extent, thickness, and conformable expression of the high-SiO2/low-FeOT layer mapped through-
out Marias Pass, in addition to its genetic relationship to fracture alteration halos up to 1 km away and the
orbital detection of likely coeval outcrops over a several kilometer range, all support the hypothesis, origi-
nally based on the detection of tridymite in the Buckskin drill sample (Morris et al., 2016), that this material
is volcanic in origin and therefore the product of an evolved magma source, rather than being the result of
passive or active SiO2 enrichment during diagenetic alteration like the high-SiO2 alteration halos upsection.
The stratigraphic correlation of Marias Pass with outcrops nearly 10 km away to both the southwest and
northeast, as well as an outcrop 1 km to the south, which is consistent with the regional dip of the Murray
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formation, provides remarkable evidence for a laterally extensive, stratigraphically bound interval of silicic
volcaniclastic sediments within the Murray formation.

5. Conclusions
Using ChemCam and APXS geochemistry to create subsurface models for DAN simulations, we have identi-
fied and mapped a thick layer of high-SiO2/low-FeOT material in the Murray formation throughout Marias
Pass. Mastcam multispectral analysis of a large outcrop, predicted to be high-SiO2/low-FeOT material based
on our DAN results, is consistent with a high-SiO2/low-FeOT composition and shares spectral character-
istics with known high-SiO2/low-FeOT material like that exposed in the Lion area. A single subhorizontal
layer can project through all high-SiO2/low-FeOT material observed in Marias Pass, and the thickness of
this layer is at least 1 m. A probable genetic link between the high-SiO2/low-FeOT bedrock in Marias Pass
and high-SiO2 fracture alteration halos is suggested by geochemical similarities and geometric relationships.
This genetic link indicates that the high-SiO2/low-FeOT bedrock extends throughout the region spanned
by Marias Pass and these alteration halos, or about 1 km. Orbital detections from CRISM of hydrated SiO2
material 1–10 km to the south, southwest, and northeast of Marias Pass are approximately stratigraphi-
cally equivalent to Marias Pass assuming an ∼3◦ regional dip to the northwest. These outcrops are likely
additional exposures of the high-SiO2/low-FeOT bedrock investigated in Marias Pass indicating that the
high-SiO2/low-FeOT material exposed in Marias Pass is laterally extensive over at least a 17.5 km distance.

The DAN-derived WEH for the high-SiO2/low-FeOT material is significantly lower than that from Chem-
Cam data in Marias Pass. This is likely due to heterogeneities in opal abundance throughout Marias Pass.
The DAN result of 1.85 ± 0.13 wt.% WEH represents the bulk hydration over tens of meters. This hydra-
tion suggests that a lower-hydration phase is present in addition to opal-A. SAM EGA temperature release
profiles suggest that both rhyolitic glass and opal were present in the Buckskin drill sample. Assuming a
maximum SiO2 glass WEH content of 3 wt.%, we calculate that there is a minimum SiO2 glass abundance
of 15.0 ± 13.5 wt.%.

The Buckskin drill sample from the stratigraphic layer described here contains tridymite. This, along with
our determinations of the large areal extent and thickness of this layer, its stratigraphically conformable
expression, and its inferred volcanic glass component, indicates that it is a volcaniclastic product derived
from felsic igneous rock. Though felsic compositions have been observed in several regions on Mars, it is not
well understood how evolved magmas could form. Mechanisms to shut off Martian mantle plumes are not
well understood, but would provide a mechanism for the production of evolved magmas on Mars, as seen in
intraplate volcanism on Earth. A few other mechanisms have also been suggested that could produce these
evolved compositions on Mars. This study is the first example of in situ mapping of a silicic volcaniclastic
layer and description of its compositional and stratigraphic characteristics on another planet. Similar future
applications of this neutron spectroscopy technique on landed missions can help resolve questions that still
persist regarding the production of evolved magmatic bodies on Mars.
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