11,000 research outputs found

    Transformation of 1,1,1-trichloroethane in an anaerobic packed-bed reactor at various concentrations of 1,1,1-trichloroethane, acetate and sulfate

    Get PDF
    Biotransformation of 1,1,1-trichloroethane (CH3CCl3) was observed in an anaerobic packed-bed reactor under conditions of both sulfate reduction and methanogenesis. Acetate (1 mM) served as an electron donor. CH3CCl3 was completely converted up to the highest investigated concentration of 10 ”M. 1,1-Dichloroethane and chloroethane were found to be the main transformation products. A fraction of the CH3CCl3 was completely dechlorinated via an unknown pathway. The rate of transformation and the transformation products formed depended on the concentrations of CH3CCl3, acetate and sulfate. With an increase in sulfate and CH3CCl3 concentrations and a decrease in acetate concentration, the degree of CH3CCl3 dechlorination decreased. Both packed-bed reactor studies and batch experiments with bromoethanesulfonic acid, an inhibitor of methanogenesis, demonstrated the involvement of methanogens in CH3CCl3 transformation. Batch experiments with molybdate showed that sulfate-reducing bacteria in the packed-bed reactor were also able to transform CH3CCl3. However, packed-bed reactor experiments indicated that sulfate reducers only had a minor contribution to the overall transformation in the packed-bed reactor.

    Highly enriched Betaproteobacteria growing anaerobically with p-xylene and nitrate

    Get PDF
    The identity of the microorganisms capable of anaerobic p-xylene degradation under denitrifying conditions is hitherto unknown. Here, we report highly enriched cultures of freshwater denitrifying bacteria that grow anaerobically with p-xylene as the sole organic carbon source and electron donor. Long curved rods, with 95% 16S rRNA gene sequence identity to Denitratisoma oestradiolicum, dominated the enrichment cultures (>91% of all cells), as detected by phylotype-specific probes. These Rhodocyclaceae microorganisms were distantly related to other denitrifying hydrocarbon-degrading Betaproteobacteria from the Azoarcus-Thauera clade. Complete oxidation p-xylene to CO(2) coupled to denitrification was suggested by quantitative measurements of substrate consumption. Metabolite analysis identified (4-methylbenzyl)succinate and (4-methylphenyl)itaconate, suggesting addition to fumarate as an initial activation reaction

    "A novel Whole Air Sample Profiler (WASP) for the quantification of volatile organic compounds in the boundary layer" published in Atmos. Meas. Tech., 6, 2703–2712, 2013

    Get PDF
    International audienceThe AMT executive editors received a complaint that the method presented in the paper by Mak et al. (2013) was largely based on an earlier invention by Pieter Tans (see e.g., the paper by Karion et al., 2010), but this earlier invention was not mentioned or referenced in the paper by Mak et al. (2013). For the AMT executive editors it is not possible to make a clear decision in this conflict. Unfortunately, it was also not possible to reach a consensus between the involved parties. This editorial note thus has two aims: 1. to make the readers of the paper by Mak et al. (2013) aware of this conflict

    Chemistry, transport and dry deposition of trace gases in the boundary layer over the tropical Atlantic Ocean and the Guyanas during the GABRIEL field campaign

    Get PDF
    We present a comparison of different Lagrangian and chemical box model calculations with measurement data obtained during the GABRIEL campaign over the tropical Atlantic Ocean and the Amazon rainforest in the Guyanas, October 2005. Lagrangian modelling of boundary layer (BL) air constrained by measurements is used to derive a horizontal gradient (≈5.6 pmol/mol km<sup>−1</sup>) of CO from the ocean to the rainforest (east to west). This is significantly smaller than that derived from the measurements (16–48 pmol/mol km<sup>−1</sup>), indicating that photochemical production from organic precursors alone cannot explain the observed strong gradient. It appears that HCHO is overestimated by the Lagrangian and chemical box models, which include dry deposition but not exchange with the free troposphere (FT). The relatively short lifetime of HCHO implies substantial BL-FT exchange. The mixing-in of FT air affected by African and South American biomass burning at an estimated rate of 0.12 h<sup>−1</sup> increases the CO and decreases the HCHO mixing ratios, improving agreement with measurements. A mean deposition velocity of 1.35 cm/s for H<sub>2</sub>O<sub>2</sub> over the ocean as well as over the rainforest is deduced assuming BL-FT exchange adequate to the results for CO. The measured increase of the organic peroxides from the ocean to the rainforest (≈0.66 nmol/mol d<sup>−1</sup>) is significantly overestimated by the Lagrangian model, even when using high values for the deposition velocity and the entrainment rate. Our results point at either heterogeneous loss of organic peroxides and/or their radical precursors, underestimated photodissociation or missing reaction paths of peroxy radicals not forming peroxides in isoprene chemistry. We calculate a mean integrated daytime net ozone production (NOP) in the BL of (0.2±5.9) nmol/mol (ocean) and (2.4±2.1) nmol/mol (rainforest). The NOP strongly correlates with NO and has a positive tendency in the boundary layer over the rainforest

    Carbamazepine and the active epoxide metabolite are effectively cleared by hemodialysis followed by continuous venovenous hemodialysis in an acute overdose

    Full text link
    Hemodialysis (HD) and continuous venovenous hemodialysis (CVVHD) have an unproven role in the management of carbamazepine overdose. Albumin‐enhanced CVVHD may accelerate carbamazepine (CBZ) clearance, but no pharmacokinetic data has been reported for traditional CVVHD without albumin enhancement. In addition, it is unclear whether the active CBZ‐epoxide metabolite is removed with either mode of dialysis. We present a case of CBZ intoxication successfully managed with sequential HD and CVVHD. The CBZ half‐life during CVVHD was 14.7 hours, compared with the patient's endogenous half‐life of 30.8 hours. The CBZ‐epoxide half‐life was 3.2 hours during HD. We conclude that HD and CVVHD provide effective clearance of CBZ and the epoxide metabolite and should be considered in the management of an acute toxic ingestion.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86953/1/j.1542-4758.2011.00563.x.pd

    The word and Riemannian metrics on lattices of semisimple groups

    Get PDF
    Let G be a semisimple Lie group of rank ≄ 2 and Γ an irreducible lattice. Γ has two natural metrics: a metric inherited from a Riemannian metric on the ambient Lie group and a word metric defined with respect to some finite set of generators. Confirming a conjecture of D. Kazhdan (cf. Gromov [Gr2]) we show that these metrics are Lipschitz equivalent. It is shown that a cyclic subgroup of Γ is virtually unipotent if and only if it has exponential growth with respect to the generators of Γ

    Cyclohexane-1,2-Dione Hydrolase from Denitrifying Azoarcus sp Strain 22Lin, a Novel Member of the Thiamine Diphosphate Enzyme Family

    Get PDF
    Alicyclic compounds with hydroxyl groups represent common structures in numerous natural compounds, such as terpenes and steroids. Their degradation by microorganisms in the absence of dioxygen may involve a C—C bond ring cleavage to form an aliphatic intermediate that can be further oxidized. The cyclohexane-1,2-dione hydrolase (CDH) (EC 3.7.1.11) from denitrifying Azoarcus sp. strain 22Lin, grown on cyclohexane-1,2-diol as a sole electron donor and carbon source, is the first thiamine diphosphate (ThDP)-dependent enzyme characterized to date that cleaves a cyclic aliphatic compound. The degradation of cyclohexane-1,2-dione (CDO) to 6-oxohexanoate comprises the cleavage of a C—C bond adjacent to a carbonyl group, a typical feature of reactions catalyzed by ThDP-dependent enzymes. In the subsequent NAD+-dependent reaction, 6-oxohexanoate is oxidized to adipate. CDH has been purified to homogeneity by the criteria of gel electrophoresis (a single band at ∌59 kDa; calculated molecular mass, 64.5 kDa); in solution, the enzyme is a homodimer (∌105 kDa; gel filtration). As isolated, CDH contains 0.8 ± 0.05 ThDP, 1.0 ± 0.02 Mg2+, and 1.0 ± 0.015 flavin adenine dinucleotide (FAD) per monomer as a second organic cofactor, the role of which remains unclear. Strong reductants, Ti(III)-citrate, Na+-dithionite, and the photochemical 5-deazaflavin/oxalate system, led to a partial reduction of the FAD chromophore. The cleavage product of CDO, 6-oxohexanoate, was also a substrate; the corresponding cyclic 1,3- and 1,4-diones did not react with CDH, nor did the cis- and trans-cyclohexane diols. The enzymes acetohydroxyacid synthase (AHAS) from Saccharomyces cerevisiae, pyruvate oxidase (POX) from Lactobacillus plantarum, benzoylformate decarboxylase from Pseudomonas putida, and pyruvate decarboxylase from Zymomonas mobilis were identified as the closest relatives of CDH by comparative amino acid sequence analysis, and a ThDP binding motif and a 2-fold Rossmann fold for FAD binding could be localized at the C-terminal end and central region of CDH, respectively. A first mechanism for the ring cleavage of CDO is presented, and it is suggested that the FAD cofactor in CDH is an evolutionary relict

    Nicotinamide treatment robustly protects from inherited mouse glaucoma.

    Get PDF
    Nicotinamide adenine dinucleotide (NAD) is a key molecule in several cellular processes and is essential for healthy mitochondrial metabolism. We recently reported that mitochondrial dysfunction is among the very first changes to occur within retinal ganglion cells during initiation of glaucoma in DBA/2J mice. Furthermore, we demonstrated that an age-dependent decline of NAD contributes to mitochondrial dysfunction and vulnerability to glaucoma. The decrease in NAD renders retinal ganglion cells vulnerable to a metabolic crisis following periods of high intraocular pressure. Treating mice with the NAD precursor nicotinamide (the amide form of vitamin B3) inhibited many age- and high intraocular pressure- dependent changes with the highest tested dose decreasing the likelihood of developing glaucoma by ∌10-fold. In this communication, we present further evidence of the neuroprotective effects of nicotinamide against glaucoma in mice, including its prevention of optic nerve excavation and axon loss as assessed by histologic analysis and axon counting. We also show analyses of age- and intraocular pressure- dependent changes in transcripts of NAD producing enzymes within retinal ganglion cells and that nicotinamide treatment prevents these transcriptomic changes. Commun Integr Biol 2018; 11(1):e1356956
    • 

    corecore